1、如图,OA=OB,∠A=∠B,有下列4个结论:①△AOD≌△BOC,②EA=EB,③点E在∠O的平分线上.④若OC=2CA,△AEC的面积为1,那么四边形OCED的面积为4.其中正确的结论个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
2、若一次函数的图象与
轴交于点
,与
轴交于点
则
(O为坐标原点)的面积为( )
A. B.
C.
D.
3、用反证法证明命题“若,则
”时,第一步应假设( )
A.
B.
C.
D.
4、下列各曲线中,不表示y是x的函数的是
A. B.
C.
D.
5、下列说法中正确的是( )
A. 一组对边平行且相等的四边形是矩形
B. 一组对边平行且有一个角是直角的四边形是矩形
C. 对角线互相垂直的平行四边形是矩形
D. 一个角是直角且对角线互相平分的四边形是矩形
6、直线沿
轴向下平移5个单位后得到的直线解析式为( )
A. B.
C.
D.
7、下列四个命题正确的是( )
A.菱形的对角线相等
B.一组对边相等,另一组对边平行的四边形是平行四边形
C.对角线相等的平行四边形是矩形
D.对角线互相垂直的平行四边形是正方形
8、下列说法中不正确的是( )
A. 平行四边形是中心对称图形
B. 斜边及一锐角分别相等的两直角三角形全等
C. 两个锐角分别相等的两直角三角形全等
D. 一直角边及斜边分别相等的两直角三角形全等
9、如图,正方形ABCD的边长为4,点E对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为( )
A. 1 B. 4- C.
D.
-4
10、在四边形中,
是对角线
、
的交点,下列条件能判定它是平行四边形的是( )
A.,
B.,
C.,
D.,
11、E、F,G、H依次为四边形ABCD各边的中点,若四边形ABCD满足______条件,那么四边形EFGH是矩形.(只需填一个你认为合适的条件)
12、“绿水青山就是金山银山”.为了山更绿、水更清,某县大力实施生态修复工程,发展林业产业,确保到2021年实现全县森林覆盖率达到72.75%的目标.已知该县2019年全县森林覆盖率为69.05%,设从2019年起该县森林覆盖率年平均增长率为x,则可列方程___.
13、某自来水公司在农村安装自来水设施时,采用一种鼓励村民使用自来水的收费办法:若整个村庄每户都安装,收整体初装费20 000元,再对每户收费200元.某村住户按这种收费方法,全部安装自来水设施后,平均每户只需支付290多块钱,则这个村庄住户数的范围为____________.
14、请写出一个大于0而小于2的无理数:______-.
15、有8个数的平均数是8,另外有12个数的平均数是9,这20个数的平均数是______.
16、化简:的结果为__________.
17、一组数据2、3、6、8、11的平均数是_________
18、随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量与大气压强x(kpa)成正比例函数关系.当
时,
,则
与
的函数关系式是____________
19、一个正比例函数的图象过点(2,﹣3),它的表达式为____________ .
20、方程实数根的个数有___________个。
21、已知,Rt△ABC中,∠ACB=90°,AB=6cm,D为AB中点,DE⊥AC于E,∠A=30°,求BC,CD和AC的长.
22、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
23、如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.
求证:四边形AECF是平行四边形.
24、一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与
之间的函数关系.
(1)根据图中信息,可知甲乙两地之间的距离为 千米,两车出发 小时相遇;
(2)已知两车相遇时快车比慢车多行驶40千米,求快车从甲地到达乙地所需时间.
25、已知关于的方程
.当该方程的一个根为1时,求m的值及方程的另一个根.
邮箱: 联系方式: