1、如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a,b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )
A. B.
C.
D.
2、标标抛掷一枚点数从1-6的正方体骰子10次,有5次6点朝上.当他抛第11次时,6点朝上的概率为( )
A.
B.
C.
D.
3、用配方法解方程x2﹣6x+3=0,下列变形正确的是( )
A.(x﹣3)2=6
B.(x﹣3)2=3
C.(x﹣3)2=0
D.(x﹣3)2=1
4、如图,、
在
的对角线
上,
,
,
,则
的大小为( ).
A. B.
C.
D.
5、如图,五边形是
的内接正五边形,
是
的直径,则
的度数是( )
A.
B.
C.
D.
6、将抛物线绕它的顶点旋转180°,所得抛物线的解析式是()
A.
B.
C.
D.
7、如图,∠ABC=80°,O为射线BC上一点,以点O为圆心, OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线绕点B按顺时针方向旋转( )
A. 40°或80° B. 50°或110° C. 50°或100° D. 60°或120°
8、如图,AB∥CD,AD=CD,∠1=55°,则∠2的度数是( )
A.70°
B.65°
C.60°
D.55°
9、若,则
的值是( )
A.
B.
C.
D.
10、如图,在矩形中,
为
的中点,连接
,点
从点
出发沿
方向向点
匀速运动,同时点
从点
出发沿
方向向点
匀速运动,点
运动速度均为每秒1个单位长度,运动时间为
,连接
,设
的面积为
,则
关于
的函数图像为( )
A. B.
C.
D.
11、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为_____.
12、已知a,b是关于x的一元二次方程x2﹣3x﹣1=0的两个实数根,则代数式3ab﹣a﹣b的值为_____.
13、如图所示,在中,
,以点
为圆心,
为半径的
与
相切于点
,交
于点
,交
于点
,且
,则图中阴影部分的面积是________.
14、方程(x+1)(x-3)=-4的解为______.
15、如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF的长度为_____.
16、某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,94.
根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.
17、如图,在菱形ABCD中,AB=4a,点E在AB上,BE=2a,∠CBA=120°,点P为AC上一动点,求PE+PB的最小值。
18、近几年来全国各省市市政府民生实事之一的公共自行车建设工作已基本完成,网上资料显示呼和浩特市某部门对14年4月份中的7天进行了公共自行车日租车辆的统计,结果如图:
(1)求这7天日租车量的众数、中位数和平均数;
(2)用(1)中的平均数估计4月份(30天)该市共租车多少万车次;
(3)资料显示,呼市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年该市租车费收入占总投入的百分率(精确到0.1%).
19、特产店销售一种水果,其进价每千克40元,按60元出售,平均每天可售100千克,后来经过市场调查发现,单价每降低2元,则平均每天可增加20千克销量.
(1)若该专卖店销售这种核桃要想平均每天获利2240元,每千克水果应降多少元?
(2)若该专卖店销售这种核桃要想平均每天获利最大,每千克水果应降多少元?
20、某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:
根据所给信息,解决下列问题:
(1)a= ,b= ;
(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?
(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.
21、某生活超市有一专柜预代理销售甲乙两家公司的一种可相互替代的日常生活用品.经过一段时间分别单独试销甲乙两家公司的商品,从销售数据中随机各抽取50天,统计每日的销售数量,得到如下的频数分布条形图.甲乙两家公司给该超市的日利润方案为:甲公司给超市每天基本费用为90元,另外每销售一件提成1元;乙公司给超市每天的基本费用为130元,每日销售数量不超过83件没有提成,超过83件的部分每件提成10元.
(1)求乙公司给超市的日利润y(单位:元)与日销售数量n的函数关系;
(2)若将频率视为概率,回答下列问题:
①求甲公司产品销售数量不超过87件的概率;
②如果仅从日均利润的角度考虑,请你利用所学过的统计学知识为超市作出抉择,选择哪家公司的产品进行销售?并说明理由.
22、如图,正方形ABCD的对角线相交于点O,点E,F分别是边BC上两点,且.将
绕点O逆时针旋转,当点F与点C重合时,停止旋转.已知,BC=6,设BE=x,EF=y.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;
x | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
y | 3 | 2.77 |
| 2.50 | 2.55 | 2.65 |
|
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合函数图象,解决问题:当EF=2BE时,BE的长度约为______.
23、如图1,若关于x的二次函数(a,b,c为常数且
)与x轴交于两个不同的点
,
,与y轴交于点C,抛物线的顶点为M,O是坐标原点.
(1)若
①求此二次函数图象的顶点M的坐标;
②定义:若点G在某一个函数的图象上,且点G的横纵坐标相等,则称点G为这个函数的“好点”.求证:二次函数有两个不同的“好点”.
(2)如图2,连接,直线
与x轴交于点P,满足
,且
的面积为
,求二次函数的表达式.
24、已如如图1,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.
(1)写出点B′的坐标,并求出直线AC对应的函数表达式;
(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;
(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.
邮箱: 联系方式: