1、如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若△AOC的面积为12,则
的值为( )
A. 6 B. -8 C. -6 D. -10
2、下列计算中,正确的是( )
A.
B.
C.
D.
3、函数中自变量x的取值范围是( )
A.≥-3
B.≥-3且
C.
D.且
4、给出4个判断:
①所有的等腰三角形都相似, ②所有的等边三角形都相似,
③所有的直角三角形都相似, ④所有的等腰直角三角形都相似.
其中判断正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
5、下列函数中:①y=﹣3x;②y=2x﹣1;③;④y=﹣x2+2x+3(x>2),y的值随着x的增大而增大的函数个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
6、已知是关于x的一元二次方程
的一个根,则a的值为( )
A.
B.
C.3
D.1或
7、如图,ΔABC为⊙O的一个内接三角形,过点B作⊙O的切线PB与OA延长线交于点P,连接OB,已知∠P=34°,则∠ACB=( )
A.17°
B.27°
C.28°
D.30°
8、如图,已知Rt△ABC中,∠C=90°,AC=8,BC=15,则tanA的值为( )
A.
B.
C.
D.
9、若反比例函数y=的图象过点(﹣2,1),则其图象所在的象限为( )
A.第一、三象限
B.第一、二象限
C.第二、四象限
D.第二、三象限
10、函数中,自变量x的取值范围是( )
A. x>-3 B. x≥-3 C. x≠-3 D. x≤-3
11、如图,已知∆ABC中,点E、F在AB边上,且AE=AC,BF=BC,,则∠ACB=_____________
12、如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为___________.
13、现有圆周的一个扇形彩纸片,该扇形的半径为
,小红同学为了在六一儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为
的圆锥形纸帽(接缝处不重叠),如图,那么剪去的扇形纸片的圆心角度数为________.
14、如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD反向延长线交y轴负半轴于E,双曲线y=(x>0)的图象经过点A,若S△BEC=8,则k=_____.
15、如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于______
16、如果正比例函数的图像经过原点和第一、第三象限,那么
______.
17、某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2= 米/分;
(2)写出d1与t的函数关系式:
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
18、某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个) | … | 160 | 200 | 240 | 300 | … |
每个玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
19、(方案设计题)某房地产集团筹建一小区,小区内居民楼南北朝向,楼高统一为16 m(共五层).已知该城市冬至日正午时分太阳高度最低,太阳光线与水平线的夹角为32°,所设计的南北两楼之间的距离为20 m(如图所示).
(1)试求出此时南楼的影子落在北楼上有多高;
(2)根据居住要求,每层居民在冬天都要有阳光,请你重新设计一下方案.(结果精确到0.1 m)
20、图中是抛物线形拱桥,点P处有一照明灯,水面OA宽4 m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3, ).
(1)点P与水面的距离是________m;
(2)求这条抛物线的表达式;
(3)当水面上升1 m后,水面的宽变为多少?
21、如下图,路灯下,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.
(1)试确定路灯的位置(用点P表示);
(2)在图中画出表示大树高的线段;
(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.
22、数学活动小组到某广场测量标志性建筑的高度.如图,他们在地面上C点测得最高点A的仰角为
,再向前
至D点,又测得最高点A的仰角为
,点C,D,B在同一直线上,求该建筑物
的高度.(参考数据:
,
,
)
23、已知抛物线y=x2+bx+c经过点A(﹣2,0)、B(0、﹣4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式.
(2)如图,P是第一象限内抛物线上一点,且,求P点坐标.
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.
24、如图1,已知抛物线y=ax2+bx+3=0(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,请问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
邮箱: 联系方式: