1、的相反数是( )
A. B.5 C.
D.
2、如图,直线与
轴、
轴分别相交于点
,
,则不等式
的解集是( )
A.
B.
C.
D.
3、如图,若α为正六边形的外角,则α的度数为( )
A.60°
B.45°
C.72°
D.50°
4、定义:,若函数
,则该函数的最大值为( )
A.0
B.3
C.5
D.8
5、在平面直角坐标系中,点A,B的坐标分别为(2m-2,3),(m,3),且点A在点B的左侧,若线段AB与直线y=-2x+1相交,则m的取值范围是( )
A. -1≤m≤ B. -1≤m≤1 C. -
≤m≤1 D. 0≤m≤1
6、开口向下的抛物线的对称轴经过点
,则
的值为( )
A. B.
C.-1或2 D.
7、下列计算正确的是
A. B.
C.
D.
8、下列说法中,正确的个数共有( )
(1)一个三角形只有一个外接圆;
(2)圆既是轴对称图形,又是中心对称图形;
(3)在同圆中,相等的圆心角所对的弧相等;
(4)三角形的内心到该三角形三个顶点距离相等;
A. 1个 B. 2个 C. 3个 D. 4个
9、为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:
月用水量(吨) | 3 | 4 | 5 | 8 |
户 数 | 2 | 3 | 4 | 1 |
则关于这若干户家庭的月用水量,下列说法错误的是( )
A. 众数是4 B. 平均数是4.6
C. 调查了10户家庭的月用水量 D. 中位数是4.5
10、为了了解我县初中学生视力情况,采用抽样调查方式,在下列的抽样方法中,最合理的是( )
A. 抽取几个乡镇的初中生
B. 抽取县城3所初中学校的学生
C. 抽取一个乡镇的所有初中学生
D. 在我县所有初中学校三个年级中各抽取1个班的学生
11、要从甲、乙、丙三名学生中选出一名学生参加数学竞赛.对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分.甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.
12、已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=(_____)
13、分式方程的解为 .
14、不等式组的解集为______.
15、用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是__________
16、已知扇形的圆心角为120º,半径为6cm,则扇形的弧长为________cm.
17、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG,请判断BE与DG的关系,并证明。
18、某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如图不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有名男生,请估计成绩达到良好及以上等级的有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会米比赛.预赛分别为
三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
19、某商场销售一款服装,经市场调查发现,每月的销售量(件)与销售单价
(元/件)之间的函数关系如表格所示.同时,商场每出售1件服装,还要扣除各种费用150元.
销售单价 | 260 | 240 | 220 |
销售量 | 63 | 77 | 91 |
(1)求与
之间的函数关系式;
(2)当销售单价为多少元时,商场每月能够获得最大利润?最大利润是多少?
(3)4月底,商场还有本款服装库存580件.若按(2)中获得最大月利润的方式进行销售,到12月底商场能否销售完这批服装?请说明理由.
20、某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
21、某宾馆客房部有60个房间供旅客居住,当每个房间的定价为每天200元时,房间可以住满.每个房间每天的定价每提高10元,就会有一个房间空闲,对有游客人住的房间,宾馆需对每个房间每天支出20元的各种费用;设每个房间每天的定价增加x元,则
(1)房间每天的入住间数__________间(用x的代数式表示);
(2)该宾馆每天的房间所收费用为_________元(用x的代数式表示);
(3)若该宾馆客房部希望每天的利润为14000元,则每个房间的定价应为每天多少元?
(为了吸引游客,每个房间的定价不会高于500元)
22、某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题:
(1)请补充完整条形统计图;
(2)B(良好)等级人数所占百分比是 ;
(3)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是 °;
(4)若该校九年级学生共1000名,估算评价结果为A等级或B等级的学生共有多少名?
23、每到春夏交替时节,杨树的杨絮漫天飞舞,易引发皮肤病、呼吸道疾病等,给人们生活造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(调查问卷如下),并根据调查结果绘制了如下尚不完整的统计图:
调查问卷
治理杨絮:您选哪一项? (每人只选一项)
A.减少杨树新增面积,控制杨树每年的栽种量;
B.调整树种结构,逐渐更换现有杨树;
C.选育无絮杨品种,并推广种植;
D.对杨树注射生物干扰素,避免产生飞絮;
E.其他.
根据以上信息,解答下列问题:
(1)在扇形统计图中,求扇形的圆心角度数;
(2)补全条形统计图;
(3)若该市约有万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
24、运城有甲、乙两家葡萄采摘园的葡萄销售价格相同,中秋期间,两家采摘园推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的葡萄六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的葡萄按售价付款。优惠期间,设游客的葡萄采摘量为(千克),在甲园所需总费用为
甲(元),在乙园所需总费用为
乙(元),
甲,
乙与
之间的函数关系如图所示.
(1)求甲,
乙与
的函数表达式;
(2)在中秋期间,李娜一家三口准备去葡萄园采摘葡萄,采摘的葡萄合在一起支付费用,则李娜一家应选择哪家葡萄园更划算?
邮箱: 联系方式: