1、已知函数(
且
)在
上单调递减,且关于
的方程
恰有两个不相等的实数解,则
的取值范围是( )
A. B.
C.
D.
2、命题“对任意的,
”的否定是( )
A.不存在,
B.存在
,
C.存在,
D.对任意的
,
3、设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,,n),用最小二乘法建立的回归方程为
=0.85x-85.71.
①y与x具有正的线性相关关系;
②回归直线过样本点的中心(,
);
③若该大学某女生身高增加1 cm,则其体重约增加0.85 kg;
④若该大学某女生身高为170 cm,则其体重必为58.79 kg.
则上述判断不正确的个数是( )
A.1
B.2
C.3
D.4
4、已知,其中
,则
=( )
A.405 B.810 C.324 D.648
5、已知函数,以下4个命题:
①函数为偶函数;
②函数在区间
单调递减;
③函数存在两个零点;
④函数存在极大值和极小值.
正确命题的个数为( )
A.1
B.2
C.3
D.4
6、下列命题中,正确的是( )
A.直线的倾斜角越大,则直线的斜率就越大
B.直线的倾斜角为α,则直线的斜率为tanα
C.直线的斜率为tanα,则直线的倾斜角是α
D.直线的倾斜角时,直线的斜率分别在这两个区间上单调递增
7、函数y的图象大致为( )
A.
B.
C.
D.
8、设为随机变量,且
,若随机变量
的数学期望
,
,则
( )
A.
B.
C.
D.
9、函数的图象如图所示,则阴影部分的面积是( )
A.
B.
C.
D.
10、已知,则
A.
B.0
C.14
D.
11、已知关于的不等式
对于任意
恒成立,则实数
的取值范围为( )
A. B.
C.
D.
12、在正项等比数列中,
,数列
的前
项之和为
A.
B.
C.
D.
13、抛物线上的点到直线
距离的最小值是
A.
B.
C.
D.3
14、已知P与Q分别为函数与函数
的图象上一点,则线段
的最小值为( )
A.
B.
C.
D.6
15、已知是两条不同直线,
是两个不同平面,下列命题中不正确的是( )
A.若,
,则
B.若
,
,则
C.若,
,则
D.若
,
,则
16、函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)+x·f′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为 .
17、已知复数,
,若
表示
的共轭复数,则复数
的模长等于_____.
18、相关变量的样本数据如表:经回归分析可得与
线性相关,并由最小二乘法求得回归直线方程为
,则
=______.
x | 1 | 2 | 3 | 4 |
y | 20 | 30 | 30 | 40 |
19、如图所示的数阵中,用表示第
行的第
个数,则以此规律
为__________.
20、已知函数的图象关于
对称,且函数
在
上单调递减,若
时,不等式
恒成立,则实数
的取值范围是______.
21、函数的图象在点
处的切线方程为___________.
22、已知一组数据的回归直线方程为,且
,发现有两组数据
,
的误差较大,去掉这两组数据后,重新求得回归直线方程为
,则当
时,
_____.
23、顺次连结空间四边形四边中点所得的四边形一定是_______四边形.
24、函数在点
处的切线的方程为______.
25、函数的最小正周期为_______
26、已知内角
的对边分别是
,若
,
,
.
(1)求;
(2)求的面积.
27、已知,
,若
,则实数
的取值范围是___________________
28、在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=
(
>0),过点
的直线
的参数方程为
(t为参数),直线
与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;
(Ⅱ)若,求
的值.
29、十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康,经过不懈的努力奋斗拼搏,新农村建设取得了巨大进步,农民年收入也逐年增加.为了实现2020年脱贫的工作计划,该地扶贫办随机收集了以下50位农民的统计数据,以此研究脱贫攻坚的效果是否与农民的受教育的发展状况有关:
| 效果明显 | 效果不明显 | 总计 |
受过教育 | 15 | 10 | 25 |
没受过教育 | 6 | 19 | 25 |
总计 | 21 | 29 | 50 |
(1)根据列联表运用独立性检验的思想方法能否有的把握认为“脱贫攻坚的效果与农民的受教育的发展状况有关”,并说明理由;
(2)现用分层抽样的方法在全部受过教育的农民中随机抽取5位农民作为代表,再从这5位农民代表中任选2位继续调查,求这2位农民代表中至少有1位脱贫攻坚效果明显的概率.
参考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:,其中
.
30、已知函数
(1)当时,求
在
处的切线方程;
(2)若函数在
上单调递减,求实数
的取值范围.
邮箱: 联系方式: