1、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
2、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
3、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
4、空间存在电场,沿电场方向建立直线坐标系Ox,使Ox正方向与电场强度E的正方向相同,如图所示为在Ox轴上各点的电场强度E随坐标x变化的规律。现将一正电子()自坐标原点O处由静止释放,已知正电子的带电量为e、正电子只受电场力,以下说法正确的是( )
A.该电场可能为某个点电荷形成的电场
B.坐标原点O与点间的电势差大小为
C.该正电子将做匀变速直线运动
D.该正电子到达点时的动能为
5、中国科学院紫金山天文台近地天体望远镜发现了一颗近地小行星,这颗近地小行星直径约为40m。已知地球半径约为6400km,若该小行星与地球的第一宇宙速度之比约为,则该行星和地球质量之比的数量级为( )
A.10-15
B.10-16
C.10-17
D.10-18
6、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
7、如图是一边长为L的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场.金属矿电阻为R,时刻,金属框在水平拉力F作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,
时刻线框全部进入磁场。则
时间内金属框中电流i、电量q、运动速度v和拉力F随位移x或时间t变化关系可能正确的是( )
A.
B.
C.
D.
8、如图所示的理想变压器电路,变压器原、副线圈的匝数可通过滑动触头P1、P2控制,R1为定值电阻,R2为滑动变阻器,L为灯泡。当原线圈所接的交变电压U降低后,灯泡L的亮度变暗,欲使灯泡L恢复到原来的亮度,下列措施可能正确的是( )
A.仅将滑动触头Pl缓慢地向上滑动
B.仅将滑动触头P2缓慢地向上滑动
C.仅将滑动变阻器的滑动触头P3缓慢地向下滑动
D.将滑动触头P2缓慢地向下滑动,同时P3缓慢地向下滑动
9、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
10、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
11、放射性元素钚()是重要的核原料,其半衰期为88年,一个静止的钚238衰变时放出α粒子和γ光子,生成原子核X,已知钚238、α粒子和原子核X的质量分别为
、
、
,普朗克常量为
,真空中的光速为c,则下列说法正确的是( )
A.X的比结合能比钚238的比结合能小
B.将钚238用铅盒密封,可减缓其衰变速度
C.钚238衰变时放出的γ光子具有能量,但是没有动量
D.钚238衰变放出的γ光子的频率小于
12、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
13、如图所示,在倾角=37°的斜面底端的正上方 H 处,平抛一个物体,该物体落到斜面上的速度方向正好与斜面垂直,则物体抛出时的初速度v为 ( )
A.
B.
C.
D.
14、如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )
A.a种色光为紫光
B.在三棱镜中a光的传播速度最大
C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大
D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光
15、2020年3月20日,电影《放射性物质》在伦敦首映,该片的主角—居里夫人是放射性元素钋()的发现者。已知钋(
)发生衰变时,会产生
粒子和原子核
,并放出
射线。下列分析正确的是( )
A.原子核的质子数为82,中子数为206
B.射线具有很强的穿透能力,可用来消除有害静电
C.由粒子所组成的射线具有很强的电离能力
D.地磁场能使射线发生偏转
16、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
17、如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则
A.杆对A环的支持力变大
B.B环对杆的摩擦力变小
C.杆对A环的力不变
D.与B环相连的细绳对书本的拉力变大
18、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
19、某同学利用如图甲所示的装置,探究物块a上升的最大高度H与物块b距地面高度h的关系,忽略一切阻力及滑轮和细绳的质量,初始时物块a静止在地面上,物块b距地面的高度为h,细绳恰好绷直,现将物块b由静止释放,b碰到地面后不再反弹,测出物块a上升的最大高度为H,此后每次释放物块b时,物块a均静止在地面上,物块b着地后均不再反弹,改变细绳长度及物块b距地面的高度h,测量多组(H,h)的数值,然后做出H-h图像(如图乙所示),图像的斜率为k,已知物块a、b的质量分别为m1、m2,则以下给出的四项判断中正确的是( )
①物块a,b的质量之比 ②物块a、b的质量之比
③H-h图像的斜率为k取值范围是0<k<1 ④H-h图像的斜率为k取值范围是1<k<2
A.①③
B.②③
C.①④
D.②④
20、福岛第一核电站的核污水含铯、锶、氚等多种放射性物质,一旦排海将对太平洋造成长时间的污染。氚()有放射性,会发生β衰变并释放能量,其半衰期为12.43年,衰变方程为
,以下说法正确的是( )
A.的中子数为3
B.衰变前的质量与衰变后和
的总质量相等
C.自然界现存在的将在24.86年后衰变完毕
D.在不同化合物中的半衰期相同
21、在阳光的照射下,充满雾气的瀑布上方常会出现美丽的彩虹,彩虹是太阳光射入球形水珠经折射、内反射、再折射后形成的,其光线传播路径如图所示,图中的圆面代表水珠过球心的截面,太阳光平行截面射入球形水珠后,最后出射光线a、b分别代表两种不同颜色的光线,则水珠对a、b两束光折射率的大小关系是na____nb; a、b两种光在水珠内传播速度大小关系是va__vb.(选填“>”、或“< ”)
22、如图所示,一束宽度为d的平行光射向截面为正三角形的玻璃三棱镜,入射光与AB界面夹角为45°,玻璃的折射率,光束通过三棱镜后到达与BC界面平行的光屏PQ。光从BC界面射出时与BC的夹角为_______,光屏PQ上光斑的宽度为_______。
23、如图所示,电源的电动势V,电阻
,电动机绕组的电阻
,开关
始终闭合。当开关
断开时,电阻
的电功率是525W;此时内电压为________V;当开关
闭合时,电阻
的电功率是336W,此时电动机的效率为________。
24、一定质量的理想气体的“卡诺循环”过程如图所示,从状态A依次经过状态B、C、D后再回到状态A。其中,A→B和C→D为等温过程,B→C和D→A为绝热过程(气体与外界无热量交换)。气体从状态A到状态B的过程,气体分子的平均动能________ (“增大”“减小”或“不变”);气体从状态B到状态C的过程气体的内能_______(填“增大”“减小”或“不变”);整个循环过程,气体从外界_______热量(填“吸收”“放出”或“无吸放”)。
25、图示为xoy平面内沿x轴传播的简谐横波在t0=0时刻的波形图象,其波速v=5.0m/s.此时平衡位置xp=0.15m的P点正在向-y方向运动,则该波的传播方向是__(选填“+x”或“-x”),经过Δt=___s时间P点的加速度第一次达到最大且指向y轴负方向;
26、如图,测得汽车蓄电池的电源电动势为14.01V。该汽车启动时,电源正、负极间的电压为11.20V,电流为360A,则该汽车电源的内阻为_________(保留2位有效数字)。该电源老化后内阻变大,电源的效率_________(选填“变大”、“变小”或“不变”)。
27、某同学利用“探究加速度与物体受力的关系”的气垫导轨装置(如图甲)测量当地重力加速度。实验步骤如下:
①调节气垫导轨下面的螺母,使气垫导轨水平并做好验证;
②用天平测量滑行器和挡光片的总质量M、牵引砝码的质量m,用游标卡尺测量挡光片的宽度D,用米尺测量两光电门中心之间的距离x;
③按图甲装配器材,调整轻滑轮,使不可伸长且质量可以忽略的细线与导轨平行;
④接通气垫导轨的气源,让滑行器从光电门G1的右侧由静止释放,用数字毫秒计分别测出挡光片经过光电门G1和光电门G2的挡光时间△t1和△t2,求出滑行器的加速度a;
⑤多次重复步骤④,求出a的平均值;
⑥根据上述实验数据求出当地重力加速度g。
回答下列问题:
(1)测量挡光片宽度D时,游标卡尺(主尺的最小分度为1mm)的示数如图乙所示,其读数为___________mm;
(2)滑行器的加速度a可用D、x、△t1和△t2表示为a=___________;
(3)当地重力加速度g可用M、m、表示为g=___________。
28、如图,匀强磁场的磁感应强度大小B=0.5T,方向竖直向下。在同一水平面上的两根光滑金属导轨相互平行,相距l=0.4m、电阻不计。导轨左端与滑动变阻器相连,变阻器接入电阻的阻值R=0.2Ω。一根电阻不计的金属棒置于导轨上,在拉力F的作用下沿导轨向右运动,运动过程中变阻器消耗的功率恒定为P=0.8W。
(1)分析金属棒的运动情况;
(2)求拉力F的大小;
(3)若保持拉力不变,迅速向上移动滑动变阻器滑片,分析金属棒的速度变化情况。
29、氢原子的能级图如图甲所示,一群处于n=3的激发态的氢原子自发跃迁,辐射出的光子中仅有a、b两种光能使图乙中的光电管电路产生光电流,测量得到的光电流I与电压U的关系曲线如图丙所示。求:
(1)b光产生的光电子的最大初动能Ek(结果用eV为单位);
(2)阴极K的逸出功W(结果用eV为单位);
(3)a光的反向遏止电压Uc2。
30、一正三棱柱形透明体的横截面如图所示,AB=AC=BC=6R,透明体中心有一半径为R的球形真空区域,一束平行单色光从AB面垂直射向透明体。已知透明体的折射率为,光在真空中的传播速度为c。求:
(i)从D点射入透明体的光束要经历多长时间从透明体射出;
(ii)为了使光线不能从AB面直接进入中间的球形真空区域,则必须在透明体AB面上贴至少多大面积的不透明纸。(不考虑AC和BC面的反射光线影响)。
31、如图甲所示,某国货车频繁脱轨、侧翻的重要原因是铁路轨道不平整。我国的高铁对轨道平整度有着极高的要求,为了检测高铁轨道可能存在的微小不平整,某科学兴趣小组设计了如图乙所示的方案:M为水平待测轨道,其上有一可沿轨道无摩擦运动的小车Ⅰ,车上固定竖直放置的n匝线圈ABCD,总阻值为R,小车与线圈总质量为m,线圈中连有微电流传感器,可显示ABCD中非常微弱的电流信号,A⃗B为电流正方向;N为标准水平平整轨道(轨道N与轨道M平行正对放置),其上有一可沿轨道运动的小车Ⅱ,小车Ⅱ上安装了车速控制系统,且车上固定磁场发射装置EFGH,该装置可在EFGH范围内激发垂直并指向ABCD的匀强磁场,磁感应强度大小为,
,
。现先将小车Ⅰ、Ⅱ平行正对放置,调节ABCD的高度,使之略高于EFGH,其高度差远小于
但大于待测轨道凹凸不平引起的高度差,然后给小车Ⅰ大小为
的初速度,同时控制小车Ⅱ以相同的速度向前匀速行驶。(不考虑磁场的边缘效应,忽略轨道不平整对小车沿轨道方向速度的影响)
(1)若在时间内,微电流传感器显示出如图丙所示的电流信号,问这段时间内经过的待测轨道是凸起还是凹陷?试简要说明理由。
(2)若小车Ⅱ在行驶过程中突然停止,求小车Ⅰ继续前进并离开的过程中,线圈上产生的总热量Q。
(3)现控制小车Ⅱ做匀减速直线运动,为确保微电流传感器不损坏,线圈中电流不能超过,求小车Ⅱ做匀减速直线运动时加速度的最大值。
32、如图所示,光滑圆弧轨道AB的半径R=0.9m,圆心角∠AOB=60°,与光滑水平面BC相切于B点,水平面与水平传送带在C点平滑连接,传送带顺时针匀速转动。质量为的小球P从A点以
=4m/s的初速度切入圆弧轨道,与静止在水平面上质量为
的物块Q发生弹性正碰,碰后取走小球P。Q到达传送带右端时恰好与传送带速度相等,从D点水平抛出后,落在水平面上的E点,D、E的水平距离x=0.9m,物块Q与传送带间的动摩擦因数μ=0.1,其余部分摩擦不计,传送带上表面距地面高度h=0.45m,重力加速度g=10m/s2,P、Q及传送带转动轮大小不计。
(1)求小球P刚刚到达B点时对轨道的压力大小;
(2)Q由C到D过程中,带动传送带的电机至少要多做多少功?
(3)若传送带以同样大小的速度逆时针转动,分析碰撞后物块Q的运动情况。
邮箱: 联系方式: