1、如图所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长的固定绝缘杆MN,小球Р套在杆上,已知P的质量为m,电荷量为,电场强度为E,磁感应强度为B,P与杆间的动摩擦因数为
,重力加速度为g,小球由静止开始下滑,在运动过程中小球最大加速度为
,最大速度为
,则下列判断正确的是( )
A.小球开始下滑时的加速度最大
B.小球的速度由增大至
的过程中,小球的加速度一直减小
C.当时小球的速度v与
之比
一定小于
D.当时小球的加速度a与
之比
一定小于
2、某波源O发出一列简谐横波,其振动图像如图所示。在波的传播方向上有M、N两点,它们到波源O的距离分别为4m和5m。测得M、N开始振动的时间间隔为1.0s。则( )
A.这列波的波速为9m/s
B.这列波的诐长
C.当N点离开平衡位置的位移为10cm时,M点正在平衡位置
D.M、N的速度始终相同
3、保护环境是可持续发展的前提,被污染的核废水中含有大量的放射性物质,其中包括碘-129、铯-137、碳-14等,排放到海中会破坏环境影响生态平衡。下列说法正确的是( )
A.碘-129的半衰期约为1570万年,海水的低温可使其半衰期变得更长
B.已知铯-137的衰变方程为可判断此衰变属于β衰变
C.碳-14的半衰期约为5730年,碳-14的污染经过约11460年能够消失
D.由于具有放射性,说明这些放射性元素原子核的比结合能较大
4、如图所示,直线加速器由多个横截面积相同的金属圆筒依次排列,相邻圆筒间的距离相同,其中心轴线在同一直线上,A、B接在电压大小不变、极性随时间周期性变化的交变电源上,粒子从序号为0的金属圆板的中心沿轴线进入圆筒。则粒子( )
A.在加速器中一直做匀加速直线运动
B.只在金属圆筒内做匀加速直线运动
C.只在相邻两个金属圆筒间做匀加速直线运动
D.在加速器中一直做加速度增大的变加速直线运动
5、手机软件中运动步数的测量是通过手机内电容式加速度传感器实现的,如图所示为其工作原理的简化示意图。质量块左侧连接轻质弹簧,右侧连接电介质,弹簧与电容器固定在外框上,质量块可带动电介质相对于外框无摩擦左右移动(不能上下移动)以改变电容器的电容。下列说法正确的是( )
A.传感器匀速向左做直线运动时,电容器两极板所带电荷量将多于静止状态时
B.传感器匀减速向右做直线运动时,电流表中有由b向a的电流
C.传感器运动时向右的加速度逐渐增大,则电流表中有由b向a的电流
D.传感器运动时向左的加速度逐渐减小,则电流表中有由a向b的电流
6、如图所示,一个质量为m、电荷量为q、不计重力的带电粒子从x轴上的P点以速度v沿与x轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴从Q点射出第一象限。已知OQ=a,则( )
A.粒子带正电
B.粒子运动的轨道半径为
C.匀强磁场的磁感应强度为
D.粒子在第一象限中运动的时间为
7、如图,质量为m的手机放置在支架斜面上,斜面与水平面的夹角为θ。重力加速度为g,手机始终保持静止状态。则( )
A.手机对支架的压力大小为mg,方向垂直于斜面向下
B.手机受到的摩擦力大小为mgsinθ,方向沿斜面向上
C.若θ增大,则支架对手机的摩擦力随之减小
D.若θ增大,则支架对手机的支持力保持不变
8、如图所示,某理想变压器原、副线圈匝数比为两个相同的灯泡,
,当开关S₁闭合、S₂断开时,两灯泡均能正常发光;当开关S₂闭合、S₁断开时,两灯泡仍均能正常发光。则R₁的阻值是( )
A.32Ω
B.16Ω
C.10Ω
D.50Ω
9、在“天宫课堂”第四课中,神舟十六号航天员朱杨柱、桂海潮展示了在微重力环境下用“特制”球拍击打水球的现象,下列说法正确的是( )
A.在地面附近也可以获得微重力环境
B.在微重力环境下,水球的惯性减小
C.水球悬浮时所受浮力与地球引力平衡
D.物体在空间站中受地球引力比在地面小很多
10、一个小物体在两个大物体的引力作用下在某些位置相对于两个大物体基本保持静止,这些位置被称为拉格朗日点,我们近似认为中继卫星“鹊桥”位于地月拉格朗日L2点与月球同步绕地球做匀速圆周运动,如图所示,下列分析正确的是( )
A.中继星“鹊桥”做圆周运动的向心力仅由地球的引力提供
B.中继星“鹊桥”圆周运动的角速度小于月球运动的角速度
C.中继星“鹊桥”圆周运动的线速度大于月球运动的线速度
D.若“鹊桥”和月球的公转轨道半径之比为n,那么它们的公转周期之比为
11、中国FAST是目前全球最大且最灵敏的射电望远镜,利用FAST灵敏度高、可监测脉冲星数目多、测量精度更高的优势,发现了具有纳赫兹引力波特征的四极相关信号的证据。利用引力波观测,能够捕捉到“黑暗”的蛛丝马迹,探测宇宙中最大质量的天体即超大质量黑洞的增长、演化及合并过程。若甲、乙两个恒星组成的双星系统在合并前稳定运行时,绕同一点做圆周运动,测得甲、乙两恒星到绕行中心的距离之比为,则甲、乙两恒星( )
A.质量之比为
B.线速度之比为
C.周期之比为
D.动能之比为
12、为探测某空间存在的匀强磁场磁感应强度的大小,某同学用绝缘细线将质量为、长为
的直导线悬于
点,如图所示,通有大小为
的电流时,导线稳定在细线与竖直方向的夹角为
处:电流变为
时,导线稳定在细线与竖直方向的夹角为
处。已知磁场方向平行于纸面,直导线垂直于纸面,重力加速度为
,则该匀强磁场的磁感应强度大小为( )
A.
B.
C.
D.
13、下列关于物理学发展历史的描述中,错误的是( )
A.英国物理学家汤姆孙发现电子,获得诺贝尔物理学奖
B.卢瑟福用α粒子轰击氮核发现了质子,第一次实现了原子核的人工转变,并通过该实验提出了原子核式结构模型
C.丹麦物理学家波尔最先得出氢原子能级表达式
D.约里奥一居里夫妇用α粒子轰击铝箔时,发现正电子和人工放射性同位素
14、如图所示,将霍尔式位移传感器置于一个沿轴正方向的磁场中,磁感应强度随位置变化关系为
(
且均为常数),霍尔元件的厚度
很小。当霍尔元件通以沿
轴正方向的恒定电流
,上、下表面会产生电势差
,则下列说法正确的是( )
A.若霍尔元件是自由电子导电,则上表面电势低于下表面
B.当物体沿轴正方向移动时,电势差
将变小
C.仅减小霍尔元件上下表面间的距离,传感器灵敏度
将变弱
D.仅减小恒定电流,传感器灵敏度
将变弱
15、无人机由于小巧灵活,国内已经逐步尝试通过无人机进行火灾救援。某消防中队接到群众报警,赶至火灾点后,迅速布置无人机消防作业。假设无人机从静止竖直向上起飞,匀减速直线运动后恰好悬停在火灾点,整个过程速度-时间图像如下图示。已知无人机的质量(含装备等)为15kg,下列说法正确的是( )
A.火灾位置距离消防地面的距离为60m
B.加速阶段的加速度比减速阶段的加速度要大
C.减速阶段,无人机螺旋桨处于失重状态
D.加速阶段时,无人机螺旋桨的升力大小为75N
16、在建筑工地上经常使用吊车起吊货物。为了研究问题方便,把吊车简化成如图所示的模型,支撑硬杆OP的一端装有定滑轮,O点为定滑轮的转轴,另一端固定在车体上,质量不计的钢丝绳索绕过定滑轮吊起质量为m的物件缓慢上升,滑轮两侧绳子的夹角为60°,不计定滑轮质量和滑轮与绳索及轴承之间的摩擦,重力加速度为g。则下列说法中正确的是( )
A.转轴对定滑轮的作用力方向竖直向上
B.转轴对定滑轮的作用力方向一定沿着PO方向
C.转轴对定滑轮的作用力大小等于
D.转轴对定滑轮的作用力大小等于2mg
17、下列说法正确的是( )
A.查德威克通过α粒子散射实验否定了汤姆逊的模型
B.某激光器能发射波长为λ的激光,发射功率为P,真空中光速为c,普朗克常量为h,则该激光器每秒发射的光子数为
C.第二类永动机不违反能量守恒定律,但违反了热力学第一定律
D.肉眼可以观察到悬浮微粒的布朗运动
18、中国在2022年发射的实践二十一号(SJ-21)卫星,实施了一项“太空城管”的“轨道清扫”任务,捕获并拖走了一颗失效的北斗二号地球同步轨道卫星。发射地球同步卫星的过程如图所示,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )
A.卫星在同步轨道Ⅱ上的运行速度可能大于7.9km/s
B.卫星在Q点通过减速实现由轨道Ⅰ进入轨道Ⅱ
C.在轨道Ⅰ上,卫星在P点的加速度小于在Q点的加速度
D.在Q点,卫星在轨道Ⅰ时的加速度等于在轨道Ⅱ时的加速度
19、带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹。如图所示,在垂直纸面向里的匀强磁场中观察到某带电粒子的轨迹,其中a和b是运动轨迹上的两点。该粒子使云室中的气体电离时,其本身的动能在减少,而其质量和电荷量不变,重力忽略不计。下列说法正确的是( )
A.粒子带正电
B.粒子先经过a点,再经过b点
C.粒子运动过程中洛仑兹力对其做负功
D.粒子运动过程中所受洛伦兹力逐渐减小
20、在如图所示的电路中,L是直流电阻可以忽略的电感线圈,闭合开关S,电路稳定后突然断开开关S并开始计时,已知LC振荡电路的振荡周期为T,则在时间内( )
A.电容器在放电
B.电场能转化为磁场能
C.A板所带的负电荷增加
D.L产生的自感电动势减小
21、打开水龙头,水流直下,仔细观察从水龙头出水口到水槽底面之间形成的水注,会发现水柱的直径逐渐变小(即上粗下细),这是因为____________。如果测得水龙头出水口的横截面积为 S,水在出水口处的速度大小为v,水槽底面离出水口的竖直高度为h,设重力加速度大小为g,则水柱在水槽底面处的横截面积为______。
22、图甲为观测光电效应的实验装置示意图,已知实验中测得某种金属的遏止电压与入射频率
之间的关系如图乙所示,则根据图像可知,普朗克常量h=________,该金属的逸出功
=_____________;如果实验中入射光的频率为
(
),则产生的光电子的最大初动能
=_______(已知电子的电荷量为e)。
23、气缸中气体的压强为,活塞的面积是
,气体做等压膨胀,推动活塞移动了
,则气体做功是______J,在做功过程中气体吸热
,气体的内能改变了______J。
24、水平路面上行驶的汽车所受到的阻力大小Ff与汽车行驶的速率成正比。若汽车保持功率不变,速率变为原来的2倍,则汽车的牵引力变为原来的_________倍;若汽车匀加速行驶,速率变为原来的2倍,则汽车的功率_________(选填“大于”“小于”或“等于”)原来的4倍。
25、沿轴正方向传播的一列简谐横波在某时刻(
)的波形图如图所示,其波速
。从图示时刻起,质点
比质点
___________(选填“先”或“后”)到达平衡位置;该波的周期
___________
;
内,质点
通过的路程
___________
。
26、手持较长软绳左端点O以周期T在竖直方向上做简谐运动,带动绳上的其他质点振动形成简谐波沿绳水平传播,如图所示.绳上有另一质点P,且O、P的平衡位置间距为L.t时刻,O位于最高点,P的位移恰好为零,速度方向竖直向上.该简谐波是__(填“横波”或“纵波”),该简谐波的最大波长为__,最大传播速度为__.
27、某实验小组设计了一种测量反应时间的“反应时间测量尺”,如图所示。当乙同学看到甲同学松手后开始捏住竖直下落的直尺,根据乙同学手指捏住的位置直接读出时间。
(1)反应测量尺的标度合理的是_________(“A”或“B”)
(2)实验时乙同学以手指恰不接触直尺为宜,如果两手指间距较大,则测得的反应时间______ (填“偏小”“无影响”或“偏大”);取g = 9.8m/s2,则能测量最大反应时间为0.4s的“反应时间测量尺”长度至少为__________m。
28、如图所示,某人把质量的石块从
高处以
角斜向上方抛出,初速度大小
,石块落到水平地面上。不计空气阻力,取重力加速度大小
,
,求:
(1)石块落地时的速度方向与水平方向的夹角;
(2)石块从抛出到刚落地过程中,重力对石块的冲量大小I。
29、如图甲所示,MN和PQ是两根互相平行、竖直放置足够长的光滑金属导轨,其间距,垂直两金属导轨所在的竖直面的匀强磁场,磁感应强度大小
,
是一根与导轨垂直且始终接触良好的金属杆,其电阻
、质量未知.开始时,将开关S断开,让杆
从位置1由静止开始自由下落,一段时间后,再将S闭合,杆ab继续运动到位置2,金属杆从位置1运动到位置2的速度随时间变化的图像如图乙所示重力加速度g取
,导轨电阻与空气阻力均不计,求:
(1)位置1与位置2间的高度差和金属杆的质量;
(2)金属杆从位置1运动到位置2,回路产生的焦耳热和经过金属杆某一横截面积的电量;
(3)若开始时,在金属杆的中点给金属杆施加一个竖直向上的恒力,让金属杆仍从位置1由静止开始自由下落,一段时间后,再将S闭合,金属杆也立即匀速并继续运动到位置2,则此过程金属杆从位置1运动到位置2的时间为多少?
30、某些建筑材料会产生反射性气体氡,如果人长期生活在氡浓度过高的环境中,氡经过人的呼吸道沉积在肺部,并放出大量的射线,从而危害人体健康.原来静止的氡核()发生一次α衰变生成新核钋(Po),测得α粒子速度为v.
(1)写出衰变的核反应过程;
(2)求新核钋(Po)的速度的大小.
31、如图甲,正方形硬质金属框放置在匀强磁场中,金属框平面与磁场方向垂直,磁场方向垂直纸面向里,磁感应强度B随时间t的变化规律如图乙所示。金属框电阻
,边长
。
(1)求时金属框中的感应电流大小;
(2)后,将金属框从图示位置以
边为轴转过
,求该过程中通过金属框横截面的电量。
32、如图所示,宽度为,磁感应强度大小为
的匀强磁场垂直于倾角为
的绝缘光滑斜面,方向向上。一电阻不计、宽为
的
型光滑金属框静止放在斜面上,
边距磁场上边界为
;电阻为
、长为
的金属棒
平行于
边静止放到金属框上面,且与金属框导电良好。某时刻同时由静止释放
型框和棒
,
边进入磁场后恰好做匀速运动;
边到达磁场下边界时,棒
正好进入磁场,并匀速穿过磁场。运动过程中棒
始终平行于
边,不计其他电阻和摩擦阻力,斜面足够长,重力加速度取
,求:
(1)型金属框的质量
;
(2)棒中产生的焦耳热;
(3)棒在
型框上面运动的总时间。
邮箱: 联系方式: