得到
  • 汉语词
  • 汉语典q
当前位置 :

昌吉州2025届高三毕业班第三次质量检测数学试题

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、,函数的图像向右平移个单位长度后关于原点对称,则的最小值为

    A.

    B.

    C.

    D.

  • 2、在正六边形中,等于

    A.0

    B.

    C.

    D.

  • 3、已知点在函数的图象上,则数列的前项和的最大值为( )

    A. B. C. D.

  • 4、已知,则的大小关系是(       

    A.

    B.

    C.

    D.

  • 5、在平面直角坐标平面内有四点为该平面内的动点,则四点的距离之和的最小值为( )

    A.

    B.

    C.

    D.

  • 6、据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为(       

    A.

    B.

    C.

    D.

  • 7、,向量,且,则

    A.-10

    B.10

    C.

    D.

  • 8、已知为坐标原点, 是抛物线上的动点,且,过点,垂足为,下列各点中到点的距离为定值的是(       

    A.

    B.

    C.

    D.

  • 9、已知函数在区间上的最大值是,则实数的值所组成的集合是(   

    A.

    B.

    C.

    D.

  • 10、在平行四边形中,,点为边的中点,点为边上的动点,则的取值范围是(       

    A.

    B.

    C.

    D.

  • 11、已知函数,若,则的值是(       

    A.

    B.

    C.

    D.

  • 12、已知抛物线,焦点为,圆,过的直线交于两点(点在第一象限),且,直线与圆相切,则  

    A. B. C. D.

  • 13、双曲线的离心率为5,则其渐近线方程为(  

    A. B. C. D.

  • 14、下图是两组各名同学体重(单位: )数据的茎叶图.设两组数据的平均数依次为,标准差依次为,那么

    (注:标准差,其中 的平均数)

    A.

    B.

    C.

    D.

  • 15、是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为(       

    A.

    B.

    C.

    D.

  • 16、已知集合,则       

    A.

    B.

    C.

    D.

  • 17、如图,在正方体中,E中点,则所成角的余弦值为(  

    A. B. C. D.

  • 18、对实数,定义运算.设函数.若函数的图象与轴恰有两个公共点,则实数的取值范围是(  

    A. B.

    C. D.

  • 19、函数上的单调递增区间是(       

    A.

    B.

    C.

    D.

  • 20、从一个含有100个个体的总体中,以简单随机抽样的方式抽取一个容量为5的样本,则其中的某个指定的个体被抽到的概率为(   )

    A.   B.   C.   D.

     

二、填空题 (共6题,共 30分)
  • 21、古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,若球的表面积等于圆柱的侧面积,则球的体积与圆柱的体积之比为_________.

  • 22、函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)+x·f′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为

  • 23、已知椭圆的左,右焦点分别为,以坐标原点O为圆心,线段为直径的圆与椭圆C在第一象限相交于点A.若,则椭圆C的离心率的取值范围为______

  • 24、的内角所对的边分别为,若成等比数列,且,则

     

  • 25、斜率为2的直线l与抛物线相交于AB两点,若AB两点的中点为,则p的值为______

  • 26、的展开式中,含的项的系数是______

三、解答题 (共6题,共 30分)
  • 27、如图,四棱锥中,四边形是等腰梯形,.

    (1)证明:平面平面

    (2)过的平面交于点,求平面与平面所成锐二面角的余弦值.

  • 28、在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖品.

    (1)顾客甲从10张奖券中任意抽取1张,求中奖次数的分布列;

    (2)顾客乙从10张奖券中任意抽取2张.

    ①求顾客乙中奖的概率;

    ②设顾客乙获得的奖品总价值为元,求的分布列.

  • 29、如图所示,已知长方体.

    (1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?

    (2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.

  • 30、设关于的一元二次方程有两根,且满足

    (1)试用表示

    (2)求证:数列是等比数列.

  • 31、已知数列{an}满足a1=1,nan+1=2(n+1)an.设bn

    (1)求b1,b2,b3的值;

    (2)判断数列{bn}是否为等比数列,并说明理由.

  • 32、已知双曲线:的右焦点为,渐近线方程为

    (1)求双曲线的标准方程;

    (2)设为双曲线的右顶点,直线与双曲线交于不同于两点,若以为直径的圆经过点,且于点,证明:存在定点,使为定值.

查看答案
下载试卷
得分 160
题数 32

类型 高考模拟
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
掌乐网(zle.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线掌乐网,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 掌乐网 zle.com 版权所有 闽ICP备18021446号-6