1、已知为函数
图象上一点,则曲线
在点
处的切线的斜率的最小值为( )
A.0
B.1
C.2
D.
2、由直线及曲线
所围成的封闭图形的面积为
A.3
B.
C.
D.
3、在矩形中,
,
,把边AB分成n等份,在
的延长线上,以
的n分之一为单位长度连续取点.过边AB上各分点和点
作直线,过
延长线上的对应分点和点A作直线,这两条直线的交点为P,如图建立平面直角坐标系,则点P满足的方程可能是( )
A.
B.
C.
D.
4、ac2>bc2是a>b的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5、某班有学生30人,其中男生18人,女生12人,若采用分层抽样的方法从该班学生中随机抽取10人去参加学校举行的消防知识竞赛,则应抽取女生的人数是( )
A.2
B.4
C.6
D.10
6、命题“,
”的否定是( )
A.,
B.,
C.,
D.,
7、函数的单调递增区间为( )
A.
B.
C.
D.
8、函数是幂函数,且在x ∈(0,+∞)上为增函数,则实数m的值是( )
A. -1 B. 2 C. 3 D. -1或2
9、已知三条不同的直线l,m,n和两个不同的平面,
,下列四个命题中正确的是( )
A.若,
,则
B.若,
,则
C.若,
,
,则
D.若,
,则
10、已知是1,2的等差中项,
是
,
的等比中项,则
等于( ).
A.6 B. C.
D.
11、已知△ABC的三个顶点,
,
.则BC边上的中线所在的直线方程为( )
A.
B.
C.
D.
12、若展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )
A.210
B.80
C.
D.
13、若函数在区间
上单调递增,则实数a的取值范围是( )
A.
B.
C.
D.
14、已知命题:
使
成立. 则
为( )
A.均成立 B.
均成立
C.使
成立 D.
使
成立
15、若向量,
,则
( )
A.5
B.11
C.16
D.18
16、(
),则
________.
17、已知,满足
,则
_____。
18、已知中心在坐标原点的椭圆E的右焦点与抛物线的焦点重合,椭圆E与抛物线C的准线交于A、B两点.若
,则椭圆E的短轴长为__________.
19、如图,圆O与离心率为的椭圆
相切于点
,过点M引两条互相垂直的直线
,
,两直线与两曲线分别交于点A,C与点B,D(均不重合).若P为椭圆上任一点,记点P到两直线的距离分别为
,
,则
的最大值是__________.
20、已知函数,则
______.
21、函数的单调递减区间是____
22、已知命题:双曲线
的渐近线方程为
,命题
:双曲线
的离心率大于2,命题
:方程
有实数解,现有下列四个命题:①
;②
;③
;④
.其中所有真命题的序号为_______
23、4名同学参加3个课外知识讲座,每名同学必须且只能随机选择其中的一个,不同的选法种数是___________(用数学字作答)
24、点到直线
距离的最大值为___________.
25、已知函数,则
_____________.
26、已知,
,记函数
(1)求函数的最小正周期;
(2)如果函数的最小值为
,求
的值,并求此时
的最大值及图像的对称轴方程.
27、已知,
.
(1)若的展开式中,二项式系数之和是
,求
展开式中的第
项;
(2)若的展开式中,二项式系数最大的项仅是第
项,求
展开式中的常数项
28、已知动圆与圆
相内切,且与圆
相内切,记圆心
的轨迹为曲线
.
(1)求曲线的方程:
(2)直线与曲线
交于点
、
,点
为线段
的中点,若
,
为坐标原点,求
面积的最大值.
29、解答下面两个问题:
(Ⅰ)已知复数,其共轭复数为
,求
;
(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1-a+(3-a)i,a∈R,若是实数,求a的值.
30、已知是由非负整数组成的无穷数列.该数列前
项的最大值记为
,第
项之后各项
的最小值记为
,
.
(1)若为
,是一个周期为
的数列(即对任意
,
),写出
,
,
,
的值;
(2)设是非负整数.证明:
(
)的充分必要条件为
是公差为
的等差数列;
(3)证明:若,
(
),则
的项只能是
或者
,且有无穷多项为
.
邮箱: 联系方式: