得到
  • 汉语词
  • 汉语典q
当前位置 :

2025-2026学年新疆博州高三(下)期末试卷数学

考试时间: 90分钟 满分: 150
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共15题,共 75分)
  • 1、  

    A. B. C. D.

  • 2、是函数的极值点,则函数       

    A.有极小值1

    B.有极大值1

    C.有极小值-1

    D.有极大值-1

  • 3、已知公比为q的等比数列中,,平面向量,则下列共线的是(       

    A.

    B.

    C.

    D.

  • 4、已知是虚数单位,则复数的虚部是(  

    A.2 B. C. D.

  • 5、若函数的图象存在与直线平行的切线,则实数a的取值范围是(   

    A. B.

    C. D.

  • 6、某活动小组由2名男同学与3名女同学组成,他们完成一项活动后,要从这5名同学中选2人写活动体会,则所选2人中没有男生的概率为(       

    A.

    B.

    C.

    D.

  • 7、在空间内,可以确定一个平面的条件是( )

    A.两两相交的三条直线,且有三个不同的交点

    B.三条直线,其中的一条与另外两条直线分别相交

    C.三个点

    D.两条直线

  • 8、复数在复平面内对应的点位于(  

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

  • 9、,则的大小关系为(       

    A.

    B.

    C.

    D.

  • 10、已知函数是奇函数,则常数的值为(   )

    A.1 B. C. D.

  • 11、在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用表示这10个村庄中交通不方便的村庄数,下列概率等于的是(       

    A.

    B.

    C.

    D.

  • 12、5名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,则不同的报名方法的种数为(  

    A. B. C. D.

  • 13、向平面区域投掷一点,则点落入区域的概率为(   )

    A. B. C. D.

  • 14、,则n的值为(       

    A.4

    B.5

    C.6

    D.7

  • 15、已知的取值如下表所示:

    2

    3

    4

    6

    4

    5

     

     

    如果线性相关,且线性回归方程,则  

    A. B. C. D.

二、填空题 (共10题,共 50分)
  • 16、,则_________

  • 17、使“函数在区间(0,m]上单调递减”成立的一个m值是_____.

  • 18、若直线与圆相交于两点,且为等边三角形(为坐标原点),则_______.

  • 19、曲线在点处的切线斜率为______.

  • 20、已知是定义在上的函数,其导函数为,且时,,则不等式的解集为___________.

  • 21、已知随机变量服从二项分布,若,则_______.

  • 22、抛物线的准线方程为_____

  • 23、设复数(为虚数单位),则________.

  • 24、过点(1,0)且与直线x﹣y=0平行的直线方程是_____

  • 25、已知直线交圆两点,则弦长的最小值为______.

三、解答题 (共5题,共 25分)
  • 26、已知数列{}满足,且.

    I)证明:数列{}是等比数列;

    II)求数列{}的前项和.

  • 27、在平面直角坐标系中,已知曲线的参数方程为为参数).以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.点为曲线上的动点,求点到直线距离的最大

  • 28、已知函数.

    (1)讨论函数的单调性;

    (2)当,函数,证明:存在唯一的极大值点,且.

  • 29、某公司为了制定下一季度的投入计划,收集了今年前6个月投入量(单位:万元)和产量(单位:吨)的数据,用两种模型①,②分别进行拟合,得到相应的回归方程,进行残差分析得到如图所示的残差值及一些统计量的值:

    月份

    1

    2

    3

    4

    5

    6

     

    投入量(万元)

    1

    2

    3

    4

    5

    6

    产量(吨)

    13

    22

    43

    45

    55

    68

    模型①的残差值

    -0.2

    -2.4

     

    -1.8

    -3

    -1.2

    模型②的残差值

    -5.4

    -8.0

    4.0

    -1.6

    1.6

    9.0

    (1)求上表中空格内的值;

    (2)残差值的绝对值之和越小说明模型拟合效果越好,根据残差比较模型①,②的拟合效果,应选择哪一个模型?并说明理由;

    (3)残差绝对值大于3的数据认为是异常数据,需要剔除,剔除异常数据后,重新求出(2)中所选模型的回归方程.

    (参考公式:)

  • 30、已知函数,其中.

    (1)当时,试求函数的单调递增区间;

    (2)若不等式时恒成立,求实数的取值范围.

查看答案
下载试卷
得分 150
题数 30

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
掌乐网(zle.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线掌乐网,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 掌乐网 zle.com 版权所有 闽ICP备18021446号-6