1、《流浪地球2》影片中,太空电梯高耸入云,在地表与太空间高速穿梭。太空电梯上升到某高度时,质量为2.5kg的物体重力为16N。已知地球半径为6371km,不考虑地球自转,则此时太空电梯距离地面的高度约为( )
A.1593km
B.3584km
C.7964km
D.9955km
2、冰壶甲以速度v0被推出后做匀变速直线运动,滑行一段距离后与冰壶乙碰撞,碰撞后冰壶甲立即停止运动。以下图像中能正确表示冰壶甲运动过程的是图像( )
A.
B.
C.
D.
3、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
4、国家为节约电能,执行峰谷分时电价政策,引导用户错峰用电。为了解错峰用电的好处,建立如图所示的“电网仅为3户家庭供电”模型,3户各有功率P=3kW的用电器,采用两种方式用电:方式一为同时用电1小时,方式二为错开单独用电各1小时,两种方式用电时输电线路总电阻损耗的电能分别为ΔE1、ΔE2,若用户电压恒为220V,不计其它线路电阻,则( )
A.两种方式用电时,电网提供的总电能之比为1:1
B.两种方式用电时,变压器原线圈中的电流之比为1:3
C.
D.
5、如图所示,有一质量为m的物块分别与轻绳P和轻弹簧Q相连,其中轻绳P竖直,轻弹簧Q与竖直方向的夹角为,重力加速度大小为g,则下列说法正确的是( )
A.轻绳P的弹力大小可能小于mg
B.弹簧Q可能处于压缩状态
C.剪断轻绳瞬间,物块的加速度大小为g
D.剪断轻绳瞬间,物块的加速度大小为gsin
6、如图所示,两端封闭的导热U形管竖直放置在水平面上,其中的空气被水银隔成①、②两部分空气柱,以下说法正确的是( )
A.若以水平虚线MN为轴缓慢转动U形管,使其倾斜,则空气柱①长度不变
B.若以水平虚线MN为轴缓慢转动U形管,使其倾斜,则空气柱①变短
C.若周围环境温度升高,则空气柱①长度不变
D.若周围环境温度升高,则空气柱①长度变大
7、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
8、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
9、歼-20战斗机安装了我国自主研制的矢量发动机,能够在不改变飞机飞行方向的情况下,通过转动尾喷口方向改变推力的方向,使战斗机获得很多优异的飞行性能。已知在歼20战斗机沿水平方向超音速匀速巡航时升阻比(垂直机身向上的升力和平行机身向后的阻力之比)为。飞机的重力为G,使飞机实现节油巡航模式的最小推力是( )
A.G
B.
C.
D.
10、如图为溜溜球示意图,A、B为细线末端,溜溜球转轴O置于细线上并水平静止在空中,细线不可伸长,不计摩擦,整个装置在同一竖直平面内。若移动A端,并保持B端位置不动,下列说法正确的是( )
A.A端缓慢水平右移过程中,细线的弹力大小不变
B.A端缓慢水平左移过程中,细线的弹力大小将变小
C.A端缓慢竖直上提过程中,细线的弹力大小将变大
D.A端缓慢竖直下移过程中,细线的弹力大小不变
11、2021年7月,我国将发射全球首颗搭载主动激光雷达二氧化碳探测的大气环境监测卫星。在航天领域中,悬绳卫星是一种新兴技术,它要求两颗卫星在不同轨道上同向运行,且两颗卫星与地心连线始终在一条直线上、如图所示,卫星乙的轨道半径为r,甲、乙两颗卫星的质量均为m,悬绳的长度为r,其重力不计,地球质量为M,引力常量为G,则两颗卫星间悬绳的张力为( )
A.
B.
C.
D.
12、在A、B两点放置电荷量分别为和
的点电荷,其形成的电场线分布如图所示,C为A、B连线的中点,D是
连线的中垂线上的另一点。则下列说法正确的是( )
A.
B.C点的电势高于D点的电势
C.若将一正电荷从C点移到无穷远点,电场力做负功
D.若将另一负电荷从C点移到D点,电荷电势能减小
13、如图所示,两个半径不等的均匀带电圆环P、Q带电荷量相等,P环的半径大于Q环的,P带正电,Q带负电。两圆环圆心均在O点,固定在空间直角坐标系中的yOz平面上。a、b在x轴上,到O点的距离相等,c在y轴上,到O点的距离小于Q环的半径。取无限远处电势为零,则( )
A.O点场强不为零
B.a、b两点场强相同
C.电子从c处运动到a处静电力做功与路径无关
D.电子沿x轴从a到b,电场力先做正功后做负功
14、2021年4月,中国科学院近代物理研究所研究团队首次合成新核素铀(),并在重核区首次发现强的质子-中子相互作用导致α粒子形成的概率显著增强的现象,这有助于促进对原子核α衰变过程中α粒子预形成物理机制的理解。以下说法正确的是( )
A.铀核()发生核反应方程为
﹐是核裂变反应
B.与
的质量差等于衰变的质量亏损
C.产生的新核从高能级向低能级跃迁时,将发射出射线
D.新核的结合能大于铀核(
)的结合能
15、如图所示,理想变压器原、副线圈接有额定电压均为20V的灯泡A和B,当输入u=220sin100πt(V)的交流电时,两灯泡均能正常发光,假设灯泡不会被烧坏,下列说法正确的是( )
A.原、副线圈匝数比为11:1
B.原、副线圈中电流的频率比为10:1
C.当滑动变阻器的滑片向上滑少许时,灯泡B变暗
D.当滑动变阻器的滑片向下滑少许时,灯泡A变亮
16、如图所示,某健身者右手拉着抓把沿图示位置A水平缓慢移动到位置B,他始终保持静止不计绳子质量,忽略绳子和重物与所有构件间的摩擦,则重物下移过程( )
A.绳子的拉力逐渐增大
B.该健身者所受合力逐渐减小
C.该健身者对地面的压力不变
D.该健身者对地面的摩擦力逐渐减小
17、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
18、有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则
的值为( )
A.
B.
C.
D.
19、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
20、如图所示,一轻质晒衣架静置于水平地面上,水平横杆与四根相同的斜杆垂直,两斜杆夹角,一重为
的物体悬挂在横杆中点,则每根斜杆受到地面的( )
A.作用力为
B.作用力为
C.摩擦力为
D.摩擦力为
21、如图,实线是一列正弦波在某时刻的波形图,经过后,其波形如图中虚线所示,设该波的周期T满足:
,则关于该波向右传播时周期为 、波速为 ,波向左传播频率为 。
22、如图甲所示是研究光电效应规律的光电管,用绿光照射阴极K,实验测得流过电流表G的电流I与AK之间的电势差UAK满足如图乙所示规律,结合图象,每秒钟阴极发射的光电子数N=________个;光电子飞出阴极K时的最大动能为________eV。
23、卢瑟福用α粒子轰击氮核,首次实现原子核的人工转变,其核反应方程为:+
→
+________________。布拉凯特从两万多张云室照片上发现:四十多万条α粒子径迹中八条产生了分叉。该现象表明:α粒子遇到氮核并引发核反应的机会________________(选填“较大”、“较小”或“非常小”)。
24、一列简谐横波以2m/s的速度沿弹性绳子由A向B传播,如图甲所示。从波传到A点开始计时,质点A的振动图象如图乙所示,开始计时后经过时间9s时,质点B第一次位于波峰位置。则该波的波长为__________m,A、B间的距离为__________m。
25、若某行星绕太阳运动的轨道半径为R,周期为T,万有引力恒量为G,则该行星的线速度大小为_________,太阳的质量为________。
26、如图,质量为30g的磁吸板擦吸附在竖直的白板上保持静止,白板与板擦之间的动摩擦因数为0.2,现用平行于白板的水平作用力F=0.4N推着板擦做匀速直线运动。板擦对白板的压力是由于________的弹性形变引起的,板擦对白板的压力为________N。
27、某兴趣小组用金属铂电阻制作量程0~500℃的电阻温度计。已知金属铂电阻与温度
的关系是:
,其中
,温度系数
。
(1)设计电路:
该小组设计的电阻温度计测量电路如图所示,准备了如下实验器材:
干电池1节(E=1.5V,内阻r=1Ω),毫安表(0~30mA, Rg=1Ω),滑动变阻器R1(0~5Ω),滑动变阻器R2(0~50Ω),开关S一只,导线若干。
滑动变阻器应选_________(选填“R1”或“R2”)。
(2)在毫安表刻度盘上标注温度刻度值
①温度调零(即确定0℃刻度)
根据电路图连接好实物,断开开关S,为保证电路安全应先将滑动变阻器的滑片拨至如图所示的b端。将金属铂电阻放入0℃冰水混合物中,闭合开关S,调节滑动变阻器阻值使毫安表满偏,则30mA刻度即对应0℃刻度,并保持滑动变阻器滑片位置不动。
②确定刻度
通过理论计算出每一电流刻度所对应的温度值,并标注在刻度盘上。毫安表半偏位置对应的温度是_________℃。该温度计刻度线是__________选填“均匀”或“不均匀”)的。
③实际检验
将金属铂电阻放入其它已知温度的物体中,待指针稳定后,检验指针所指温度与实际温度在误差允许范围内是否一致。
(3)实际测量
测量前完成(2)中①的温度调零操作,将金属铂电阻放入某未知温度的物体中,待指针稳定后读数,测出该物体的温度。
(4)误差分析
若干电池使用时间较长,其电动势会减小,内阻变大。用该温度计按照(3)中的测量方法进行测量(能够完成温度调零),则测量结果_________(选填“偏大”“不变”或“偏小”)。
28、地球对其周围的物体产生的万有引力是通过地球周围的引力场产生的,物体在引力场中具有的势能我们称为引力势能。在物理学中,动能、引力势能和弹性势能统称为机械能。若规定距地球无限远处为引力势能零点,可得到在半径为r的轨道上做匀速圆周运动的人造地球卫星引力势能的表达式,其中M为地球的质量,m为卫星的质量,G为万有引力常量。
(1)求:①该卫星的动能;
②该卫星的机械能;
③若该卫星变轨后到达高轨道继续做匀速圆周运动,请说明随着轨道半径的增大,该卫星的机械能变化情况及原因。(不计卫星质量的变化)
(2)已知在地球表而附近,对于质量为m的物体离开地面高度为h时,若规定地球表面为重力势能零点,物体重力势能的表达式(g为重力加速度),这个表达式虽然与题干中引力势能的表达式在形式上有很大的差别,但二者本质相同,试证明在忽略地球自转的情况下,当h远小于地球半径R时,重力势能和引力势能的表达式是一致的。(可能用到的数学知识:当
时,
29、某同学利用实验室闲置的1m长的玻璃管和一个标称4.5L的金属容器做了一个简易温度计。如图所示,将1m长的直尺和玻璃管固定在竖直木板上,直尺与玻璃管两端对齐,玻璃管左端A开口,玻璃管右端B处用细软管与金属容器连接,接口处均密封良好,在玻璃管内有一小段密封良好、可自由滑动的圆柱体蜡块(长度可以忽略),蜡块与玻璃管的摩擦不计。大气压强始终为p0,软管内部体积可忽略,玻璃管内横截面积为10cm2。当温度为27℃时,蜡块刚好在玻璃管的正中间。
(1)该温度计刻度是否均匀,并计算出这个温度计的测量范围。
(2)如果玻璃管的左端A用密封盖密封,现用一个打气筒通过A端向玻璃管打气,打气筒每次可将压强为p0的气体mL完全压入玻璃管中,需要多少次才能把蜡块从玻璃管中间位置压到玻璃管右端B点?(由于导热,气体的温度保持不变)
30、如图所示,将小物块(可视为质点)平放在水平桌面的一张薄纸上,对纸施加平行于桌边的恒定水平拉力将其从物块底下抽出。已知物块的质量为M,纸与桌面、物块与桌面间的动摩擦因数均为μ1,纸与物块间的动摩擦因数为μ2,重力加速度为g。
(1)若薄纸的质量为m,则从开始抽纸到纸被抽离物块底部的过程中,
①求薄纸所受总的摩擦力为多大;
②从冲量和动量的定义,结合牛顿运动定律和运动学规律,证明:水平拉力和桌面对薄纸摩擦力的总冲量等于物块和纸的总动量的变化量。(注意:解题过程中需要用到、但题目中没有给出的物理量,要在解题中做必要的说明。)
(2)若薄纸质量可忽略,纸的后边缘到物块的距离为L,从开始抽纸到物块最终停下,若物块相对桌面移动的距离为S0 ,求此过程中水平拉力所做的功。
31、如图所示,大量的同种粒子从静止经电压加速后。沿虚线方向射入正交的电磁场之中,恰好做直线运动,电场强度方向竖直向下,磁感应强度
。方向垂直纸面向里,两平行板之间的距离
。平行板右侧有一圆形磁场区域,圆心O在虚线上、半径
,圆内有垂直纸面向里的磁场B,B的大小可以调控。边界上有磁场。圆形区域的上方安装有荧光屏,荧光屏与虚线平行。与O的距离
,M、N是荧光屏上两点,
连线与屏垂直,N到M点之间的距离
。已知加在平行板间的电压
,粒子的比荷为
。不计重力的影响,求:
(1)加速电场大小;
(2)要使粒子打到荧光屏上之间,圆形区域内的磁场B范围。
32、如图所示,光滑斜轨道AB和光滑半圆环轨道CD固定在同一竖直平面内,两轨道由一条光滑且足够长的水平轨道BC平滑连接,水平轨道与斜轨道间由一段小的圆弧过渡,斜轨道最高点A离水平轨道的高度为h。小物块b锁定在水平轨道上P点,其左侧与一放在水平轨道上的轻质弹簧接触(但不连接),小物块a从斜轨道的顶端A由静止释放,滑下后压缩轻质弹簧,当轻质弹簧压缩到最短时,解除对小物块b的锁定。已知小物块a的质量为2m,小物块b的质量为m,半圆环轨道CD的半径,重力加速度为g:
(1)求小物块a再次滑上斜轨道的最大高度;
(2)请判断小物块b能否到达半圆环轨道的最高点D,并说明理由。
邮箱: 联系方式: