1、如图1,在△ABC中,AB=AC,∠BAC=120°.点O是BC的中点,点D沿B→A→C方向从B运动到C.设点D经过的路径长为x,图1中某条线段的长为y,若表示y与x的函数关系的大致图象如图2所示,则这条线段可能是图1中的( )
A.BD B.AD C.OD D.CD
2、某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为 ( )
A. y=2a(x-1) B. y=2a(1-x)
C. y=a(1-x2)2 D. y=a(1-x)2
3、下列选项中的事件,属于必然事件的是( )
A.在一个只装有白球的袋中,摸出黑球
B.a是实数,
C.在一张纸上任意画两条线段,这两条线段相交
D.两数相加,和是正数
4、下列各式中,化简后不能与合并的是( )
A.
B.
C.
D.
5、关于x的一元二次方程kx2-4x-1=0有两个实数根,则k的取值范围是( )
A.k≥-4 B.k≥4 C.k>-4且k≠0 D.k≥-4且k≠0
6、如果圆的半径为6,那么60°的圆心角所对的弧长为( )
(A)π (B)2π (C)3π (D)6π
7、如图,与
位似,点
是它们的位似中心,其中
,则
与
的面积之比是( )
A.
B.
C.
D.
8、下列图形中是中心对称图形的是( )
A.
B.
C.
D.
9、若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为().
A. 18° B. 36° C. 72° D. 144°
10、已知方程ax2+bx+c=0的解是x1=2,x2=﹣3,则方程a(x+1)2+b(x+1)+c=0的解是( )
A. x1=1,x2=﹣4 B. x1=﹣1,x2=﹣4
C. x1=﹣1,x2=4 D. x1=1,x2=4
11、请你写出一个顶点坐标为的二次函数表达式:________.
12、计算:________.
13、在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是_____.
14、在实数范围内分解因式:x3-6x=___.
15、如图,半圆的圆心与坐标原点重合,半圆的半径为2,直线l的解析式为y=x+t.若直线l与半圆只有一个交点,则t的取值范围是_________.
16、已知圆⊙O的直径为10,弦AB的长度为8,M是弦AB上一动点,设线段OM=d,则d的取值范围是 _____.
17、如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.
(1)求∠C的大小;
(2)求阴影部分的面积.
18、某校随机抽取九年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:
(1)九年级接受调查的同学共有多少名,并补全条形统计图;
(2)九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.
19、晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得.已知李明直立时的身高为
,求路灯的高CD的长.
20、如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用 高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米)
(已知sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, sin15°≈0.26, cos15°≈0.97, tan15°≈0.27.)
21、已知△ABC的边BC长为5,另两边AB,AC的长分别为关于x的一元二次方程的两个实数根。
(1)求证:无论k为何值,方程总有两个不相等的实数根;
(2)当k=2时,请判断△ABC的形状并说明理由;
22、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)求这个函数的表达式及写出变量V的取值范围;
(2)当气体体积为1m3时,气压是多少?
(3)当气球内的气压大于128kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
23、已知二次函数y=2x2﹣4x﹣6.
(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;
(2)在所给的平面直角坐标系中,画出这个二次函数的图象;
(3)当﹣2<x<3时,观察图象直接写出函数y的取值范围;
(4)若直线y=k与抛物线没有交点,直接写出k的范围.
24、为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)的山坡AB上发现棵古树CD,测得古树底端C到山脚点A的距离
m,在距山脚点A处水平距离6m的点E处测得古树顶端D的仰角
(古树CD与山坡AB的剖面、点E在同一平面上,古树CD所在直线与直线AE垂直),则古树CD的高度约为多少米?(结果精确到整数)(数据
,
,
)
邮箱: 联系方式: