1、如图,AB为的直径,点C,D在圆上,若∠D=64°,则∠BAC的度数为( )
A.64°
B.34°
C.26°
D.24°
2、如图是
上的四个点
,
,则
的度数是( )
A.
B.
C.
D.
3、如图, ,∠1=56°,则∠2的度数为( )
A. 34° B. 56° C. 124° D. 146°
4、a表示﹣2的相反数,则a是( )
A.2
B.
C.﹣2
D.﹣
5、如图,在△ABC 中,∠C=90°,AB=10cm,BC=6cm,动点 P 从点 C 出发,沿 C﹣A﹣B﹣C 运动,速度为 2cm/s,动点 Q 从点 C 出发,沿 C﹣B﹣A﹣C 运动,速度为cm/s,两点相遇时停止.这一过程中 P,Q 两点之间的距离 y 与时间 t 之间的关系的大致图象是( )
A. B.
C.
D.
6、有20张背面完全一样的卡片,其中8张正面印有双龙洞风光,7张正面印有仙华山风光,5张正面印有方岩风光,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是双龙洞风光卡片的概率是( )
A. B.
C.
D.
7、如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为( )
A. (1,2.5) B. (1,1+ ) C. (1,3) D. (
﹣1,1+
)
8、下列图形中,既是中心对称又是轴对称的图形是( )
A.
B.
C.
D.
9、计算3﹣2
的结果是( )
A. B. 2
C. 3
D. 6
10、在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点(如图),则∠EAF等于( ).
A. 60° B. 75° C. 120° D. 45°
11、分解因式:ax2-9a= .
12、假设某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为90%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,6小时车库恰好停满;如果开放3个进口和2个出口,3小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,因为车库改造,只能开放1个进口和1个出口,则从早晨7点开始经过______小时车库恰好停满.
13、如图放置的一个圆锥,它的主视图是边长为2的等边三角形,则该圆锥的侧面积为_________.(结果保留)
14、如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为_____.(结果保留π)
15、如果cosA=0.8888,则∠A≈_________(精确到″)
16、分解因式:2mx-6my=__________.
17、某调查机构将今年绍兴市民最关注的热点话题分为消费.教育.环保.反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)本次共调查_________人,请在答题卡上补全条形统计图并标出相应数据;
(2)若绍兴市约有500万人口,请你估计最关注教育问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲.乙.丙.丁四人最关注教育问题,现准备从这四中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(画树状图或列表说明).
18、已知抛物线(
,
是常数,且
),经过点
,
,与
轴交于点
.
(Ⅰ)求抛物线的解析式;
(Ⅱ)若点是射线
上一点,过点
作
轴的垂线,垂足为点
,交抛物线于点
,设
点横坐标为
,线段
的长为
,求出
与
之间的函数关系式,并写出相应的自变量
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当点在线段
上时,设
,已知
,
是以
为未知数的一元二次方程
(
为常数)的两个实数根,点
在抛物线上,连接
,
,
,且
平分
,求出
值及点
的坐标.
19、阅读下列材料:
2016年,北京市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了“十三五”良好开局.
在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.
在科技方面,2016年全年研究与试验发展(R&D)经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展(R&D)活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展(R&D)经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.
(以上数据来源于北京市统计局)
根据以上材料解答下列问题:
(1)请用统计图或统计表将北京市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;
(2)2015年北京市研究与试验发展(R&D)活动人员为 万人;
(3)根据材料中的信息,预估2017年北京市全年研究与试验发展(R&D)经费支出约 亿元,你的预估理由是 .
20、计算:
21、先化简,在求值: ,其中
22、先化简:,并在
中选一个合适的数求值.
23、学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m的小明(AB)的影子BC长是3 m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6 m.
(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH;
(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH的中点B1处时,其影子长为B1C1;当小明继续走剩下路程的到B2处时,其影子长为B2C2;当小明继续走剩下路程的
到B3处,…,按此规律继续走下去,当小明走剩下路程的
到Bn处时,其影子BnCn的长为
m.(直接用含n的代数式表示)
24、如图,AB为⊙O的直径,BC⊥AB与点B,连接OC交⊙O于点E,弦AD∥OC.
求证:(1)DE=BE;
(2)CD是⊙O的切线.
邮箱: 联系方式: