1、如图所示,折射率的透明玻璃半圆柱体,半径为R,O点是某一截面的圆心,虚线
与半圆柱体底面垂直。现有一条与
距离
的光线垂直底面入射,经玻璃折射后与
的交点为M,图中未画出,则M到O点的距离为( )
A.
B.
C.
D.
2、如图所示,匝数、面积
、电阻
的线圈处在竖直向下的均匀磁场中,磁感应强度为
,通过软导线分别与边长为
、每个边的阻值均为
、质量分布均匀的正方形线框的d、c相连接,正方形线框用两个劲度系数为
的轻质绝缘弹簧悬吊在天花板上,整个线框处在垂直纸面向外的匀强磁场中,磁感应强度大小为
,已知
随时间的变化规律为
,开关闭合前线框静止,开关闭合,稳定后,两弹簧的长度均变化了
。忽略软导线对线框的作用力。则下列说法正确的是( )
A.线框中的电流方向为由c到d
B.ab边与cd边所受的安培力相等
C.流过线圈的电流为
D.磁感应强度的大小为
3、如图所示为登月飞船飞行任务中的某个阶段,飞船绕月球沿顺时针方向做匀速圆周运动,周期为,飞船到月球球心的距离为
;月球在同一平面内绕地球沿顺时针方向做匀速圆周运动,公转周期为
,轨道半径为
。已知引力常量为G,
小于
。下列说法正确的是( )
A.飞船的发射速度大于第二宇宙速度
B.由已知信息可求出地球的质量为
C.由图示位置到下一次地球、月球、飞船共线,所用时间为
D.由图示位置到下一次地球、月球、飞船共线,所用时间为
4、关于玻尔理论、氢原子能级、跃迁,下列说法正确的是( )
A.玻尔的原子结构假说认为核外电子可在任意轨道上运动
B.一群处于能级的氢原子向低能级跃迁时,辐射的光子频率最多有12种
C.玻尔理论认为原子的能量和电子的轨道半径均是连续的
D.原子处于称为定态的能量状态时,虽然电子做变速运动,但并不向外辐射能量
5、11月15号开幕的第56届校运会上,同学们积极参加各个项目的角逐,关于比赛,下列说法正确的是( )
A.研究跳远比赛的动作时,可以将运动员看作质点
B.1500米赛跑的成绩记录的是运动员到达终点的时刻
C.跳高运动员落到海绵垫上,海绵垫对人的支持力与人对海绵垫的压力一样大
D.实心球抛出到落地,它的位移大小等于路程
6、如图所示,圆形区域内有垂直纸面的匀强磁场(图中未画出),三个质量和电荷量都相同的带电粒子a、b、c以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图所示,若带电粒子只受磁场力的作用,则下列说法正确的是( )
A.a粒子速率最大
B.c粒子速率最大
C.c粒子在磁场中运动时间最长
D.它们做圆周运动的周期
7、如图为某种材料制成的半圆形透明砖,三束不同颜色的光垂直于直径方向射入半圆形透明砖,都恰好能在圆弧面PMN相应位置发生全反射,则下列说法正确的是( )
A.a光的折射率最大、光子能量最大
B.b光的波长最长、光子能量最大
C.c光的折射率最大、光子能量最大
D.a光的折射率最小、光子能量最大
8、现用两种单色光分别照射同一个光电管,如图甲所示,移动滑动变阻器的滑片调节光电管两端电压,分别得到两种光照射时光电流与光电管两端电压的关系,如图乙,则对于
两种光( )
A.光的饱和光电流更大
B.从同一种介质射向真空中,光更容易发生全反射
C.若用光照射另外某种金属能发生光电效应,则用
光照射也一定能发生光电效应
D.通过同一个双缝装置进行双维干涉实验,光的条纹间距更宽
9、如图所示为一定质量理想气体的体积V与温度T的关系图像,它由状态A经等温过程到状态B,再经等容过程到状态C,设A、B、C状态对应的压强分别为、
、
,则下列关系式中正确的是( )
A.
B.
C.
D.
10、如图所示,理想变压器原、副线圈的匝数之比为,a、b接入电压有效值恒定的交变电源,其中
为滑动变阻器,
、
为定值电阻,电流表、电压表均为理想电表,当滑动变阻器
的滑片向下移动后,电流表及两个电压表示数变化量的绝对值分别用
、
和
表示,下列判断正确的是( )
A.
B.
C.
D.
11、如俯视图所示,水平桌面上放着一根足够长的刚性折线形导轨FOG,一根足够长的金属棒PQ放在导轨上并与导轨接触良好,FOG的角平分线垂直平分金属棒。整个空间中有竖直向上的匀强磁场,磁感应强度大小为B。导轨及金属棒单位长度的电阻均为r。导轨和金属棒的质量均为m。不计一切摩擦。金属棒初始时紧靠O点。给金属棒一个沿着FOG角平分线向右的初速度v0,金属棒最终与O点的距离为d,下列说法正确的是( )
A.金属棒开始运动之后,回路中的电流保持不变
B.PQ两端最终的电势差是初始时的一半
C.B越大,导轨上产生的总焦耳热越大
D.若v0加倍,则d加倍
12、某古法榨油中的一道工序是撞榨,即用重物撞击楔子压缩油饼。如图所示,质量为50kg的重物用一轻绳与固定点O连接,O与重物重心间的距离为4m,某次将重物移至轻绳与竖直方向成37°角处,由静止释放,重物运动到最低点时与楔子发生碰撞,若碰撞后楔子移动的距离可忽略,重物反弹,上升的最大高度为0.05m,作用时间约为0.05s,重力加速度g取10m/s2,sin37°=0.6,整个过程轻绳始终处于伸直状态,则碰撞过程中重物对楔子的作用力约为( )
A.4000N
B.5000N
C.6000N
D.7000N
13、如图,矩形线框ABCD的匝数为N,面积为S,线框所处匀强磁场的磁感应强度大小为B。线框从图示位置开始绕轴OO以恒定的角速度沿逆时针方向转动,线框通过两个电刷与外电路连接。外电路中理想变压器原、副线圈的匝数比为k:1,定值电阻R1=R,R2=2R,忽略其余电阻。则( )
A.图示位置,线框的磁通量大小为NBS
B.图示位置,线框的感应电动势大小为NBSω
C.流过R1、R2的电流之比为2k:1
D.线框的输出功率为
14、一木块静止在光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2cm后相对于木块静止,同一时间内木块被带动前移了1cm,则子弹损失的动能、木块获得动能之比为( )
A.3:2
B.3:1
C.2:1
D.2:3
15、如图所示,倾角为的斜面固定在水平面上,一段轻绳左端拴接在质量为2m的物体P上,右端跨过光滑的定滑轮连接质量为m的物体Q,整个系统处于静止状态。对Q施加始终与右侧轻绳夹角为
的拉力F,使Q缓慢移动直至右侧轻绳水平,该过程中物体P始终静止。下列说法正确的是( )
A.拉力F先变大后变小
B.轻绳的拉力先减小后增大
C.物体P所受摩擦力沿斜面先向下后向上
D.物体P所受摩擦力先增大后减小
16、如图甲所示,粗糙且足够长的平行金属导轨AB、CD固定在同一绝缘水平面上,A、C端连接一阻值R=0.8Ω的电阻,导轨电阻忽略不计,整个装置处于竖直向上的勾强磁场中(磁场未画出),磁感应强度大小随时间变化的情况如图乙所示,导轨间距d=2m。现有一质量为m=0.8kg、阻值r=0.2Ω的金属棒EF垂直于导轨放在两导轨上,金属棒距R距离为L=2.5m,金属棒与导勃接触良好。已知金属棒与导轨间的动摩擦因数=0.5,设最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,下列说法正确的是( )
A.金属棒相对于导轨静止时,回路中产生的感应电动热为2.5V
B.金属棒相对于导轨静止时,回路中产生的感应电流为1A
C.4s后金属棒开始运动
D.在0~2.5s时间内通过R的电荷量q为5C
17、用氢原子由m、n能级跃迁到基态释放的光子,分别照射同一光电管时,测得的光电流与电压的关系图像如图中的1、2两条曲线所示,已知m、n能级对应的原子能量分别为、
,电子电荷量的绝对值为e,则下列说法正确的是( )
A.
B.1、2两种情况下产生的光电子最大初动能之比为
C.1、2两种情况下单位时间内逸出的光电子数之比为
D.氢原子吸收能量为的光子可由m能级跃迁到n能级
18、如图所示,某同学用地理学中的“等高线”来类比物理学中的“等势线”,并绘制了一座“小山峰”来反映点电荷产生的电场在xOy平面内各点电势关系的图像。距点电荷无穷远处电势为零,则下列判断正确的是( )
A.该图像描述的是放在O点的负点电荷产生的电场
B.图中M点对应位置的场强比N点对应位置的场强大
C.图中M点对应位置的场强方向沿M点所在曲线的切线方向斜向下
D.点电荷在M点所对应位置的电势能一定比在N点所对应位置的电势能大
19、如图甲所示,某动画片里两个质量相同的小猴子为了偷到树下面桌子上的香蕉,用同一不可伸长的轻质细绳拉着,分别尝试了两种方式。如图乙所示,是使下面的猴子在竖直平面内来回摆动,
是使下面的猴子在水平面内做匀速圆周运动,
摆动时细绳偏离竖直方向的夹角的最大值和
摆动时细绳与竖直方向的夹角都为
,则下列说法正确的是( )
A.中猴子所受合力指向轨迹圆圆心
B.中猴子所受合力指向轨迹圆圆心
C.中把细绳调短些,
不变,则上面的猴子所在树枝比之前更容易折断
D.中把细绳调短些,
不变,则上面的猴子所在树枝比之前更容易折断
20、图中实线和虚线分别表示一列简谐横波在传播方向上相距的两质点P和Q的振动图像。该波的波长可能为( )
A.
B.
C.
D.
21、质量为m的物体用轻绳AB悬挂于天花板上。用水平向左的力F缓慢拉动绳的中点O,如图所示。用T 表示绳OA段拉力的大小,在O点向左移动的过程中,力F逐渐_____(选填“变大”或“变小”),拉力T逐渐_____(选填“变大”或“变小”)。
22、双缝干涉实验中,已知屏到双缝距离为1.2m,双缝间距为0.03mm,屏上第二级明纹()到中央明纹(
)的距离为4.5cm,则所用光波的波长
___________。
23、用游标卡尺测量玻璃管的内径时,应用如图甲所示的游标卡尺的A、B、C三部分中的 部分(填代号)与玻璃管内壁接触.用20分度的游标卡尺测量结果如图乙所示,读数为 mm.
24、请正确读出下图中各表达读数:
(1)如图(a),接0~3V量程时读数为___________V; 接0~15V量程时读数为___________V。
②如图(b),接0~3A量程时读数为___________A;接0~0.6A量程时读数为___________A。
25、如图所示,用两条一样的弹簧吊着一根铜棒,铜棒所在的虚线框范围内有垂直纸面的匀强磁场,棒中通入自左向右的电流。当棒静止时,每个弹簧的拉力大小均为F1,若将棒中电流反向但不改变电流大小,当棒静止时,每个弹簧的拉力大小均为F2,且F2>F1,则磁场的方向为_________,安培力的大小为______________。
26、如图所示是研究光电管产生的电流的电路图,A、K是光电管的两个电极,已知该光电管阴极的极限频率为ν0。现将频率为ν(大于ν0)的光照射在阴极上,则:
(1)________是阴极,阴极材料的逸出功等于________。
(2)加在A、K间的正向电压为U时,到达阳极的光电子的最大动能为____________,将A、K间的正向电压从零开始逐渐增加,电流表的示数的变化情况是________________。
(3)为了阻止光电子到达阳极,在A、K间应加 U反=________的反向电压。
(4)下列方法一定能够增加饱和光电流的是________。
A.照射光频率不变,增加光强
B.照射光强度不变,增加光的频率
C.增加A、K电极间的电压
D.减小A、K电极间的电压
27、如图甲所示,光滑小钢球从电磁铁下边缘自由下落,经过小球竖直下方的光电门的水平细激光束时,毫秒计时器记录下小球的挡光时间Δt,测出小球直径d以及释放前小球球心到光电门光孔的竖直距离为h,小芳希望能精确测量当地的重力加速度.
(1)如图乙为测量小球直径的放大图,小球的直径d=________mm.
(2)在某次测量中,测得小球通过光电门的时间为Δt=2.0ms,小球下落高度h=0.84m,根据这些数据,可求得的重力加速度g=________m/s2.(保留三位有效数字)
(3)该测量结果与当地的重力加速度有较大的误差,小芳同学通过反思后提出了四种原因,你认为合理的是________.
A. 小球下落时受到了空气阻力
B. 小球下落后受到铁芯的引力
C. 小球下落的高度不够大
D. 小球通过光电门时球心偏离细光束
(4)经过讨论后小芳改变测量方案:她重新设置光电门,测量小球从释放到触及光电门光线的时间t,并测量小球每次释放时到光电门光孔的高度h,并计算出每次下落的平均速度v,得到数据如下表所示,在坐标系中作v-t图象___________,根据图象可得重力加速度为________m/s2.(保留两位有效数字)
28、在一直径为200m的圆形滑冰场上,教练和运动员分别站在直径AB的两端,教练从A端沿与AB成53°角的方向以16m/s的速度沿冰面击出冰球的同时,运动员从B点出发沿直线匀加速运动,在冰球到达圆形场地边缘时恰好拦住冰球。已知冰球被拦住时速度大小为4m/s,取sin53°=0.8,cos53°=0.6,g=10m/s2.求:
①冰球与冰面间的动摩擦因数;
②运动员的加速度大小。
29、如图,直角三角形ABD为一透明砖的横截面,∠A=30°,∠D=90°,BD=2a,P为BD的中点,一光线自P点垂直BD边入射,在AB边恰好发生全反射,真空中的光速为c,每条边只考虑一次反射或折射。
(ⅰ)求透明砖的折射率并判断光是否能从AD边射出;
(ⅱ)求光从P点传播到AD边的时间。
30、两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b,杆a、b的电阻分别为Ra=2 Ω、Rb=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以初速度大小v0=5 m/s开始向左滑动,同时由静止释放杆a,杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A;从a下滑到水平轨道时开始计时,a、b运动的速度—时间图象如图乙所示(以a运动方向为正方向),其中ma=2 kg,mb=1 kg,g取10 m/s2,求:
(1)杆a在弧形轨道上运动的时间;
(2)杆a在水平轨道上运动过程中通过其截面的电荷量;
(3)在整个运动过程中杆b产生的焦耳热.
31、如图所示,内壁光滑的管道ABCD竖直放置,其圆形轨道部分半径,管道左侧A处放有弹射装置,被弹出的物块可平滑进入管道,管道右端出口D恰好水平,且与圆心O等高,出口D的右侧接水平光滑直轨道。P位置放一质量
的物块乙,质量为
的物块甲通过弹射装置获得初动能。弹簧的弹性势能与压缩量的平方成正比,当弹射器中的弹簧压缩量为d时,滑块甲到达与圆心O等高的C处时刚好对管壁无挤压。管道内径远小于圆形轨道半径,物块大小略小于管的内径,物块视为质点,空气阻力忽略不计,g取
;结果保留2位小数
(1)求弹射器释放的弹性势能和滑块经过B点时对管道的压力F;
(2)当弹射器中的弹簧压缩量为2d时,滑块甲与滑块乙在P处发生碰撞(碰撞时间极短),碰后粘在一起运动,求因碰撞甲物块损失的机械能。
32、如图所示,倾角为θ的轨道底端挡板上固连一轻质弹簧,弹簧另一端与质量为m的小滑块A固连,弹簧处于原长,滑块A静止于O点。现有与A完全相同的小滑块B沿轨道以大小v0的速度匀速下滑,并与A滑块发生碰撞,最终滑块B静止于O点上方L处,已知A、B间的碰撞时间极短且是弹性碰撞,弹簧始终在弹性限度内,重力加速度为g。
(1)求弹簧的最大压缩量xm;
(2)现将滑块B换成质量为的小滑块C,C以v0的速度匀速下滑,与A发生碰撞并瞬间连成一个整体,若AC整体能回到O点,求AC整体第一次向上通过O点时的速度大小
邮箱: 联系方式: