1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、以黄铜矿(主要成分为铁、铜、硫三种元素组成的化合物)为基本原料,通过一系列的冶炼可得到铜、铁、SO2、SO3、H2SO4等物质,回答下列问题:
(1)基态铁原子价层电子排布式为____________,基态硫原子的核外电子共有_______种不同的能量。硫元素所在周期的非金属元素第一电离能由大到小的顺序为__________。
(2)SO2、SO3、H2SO4中,硫原子的杂化轨道类型为sp3的物质是________,SO2的分子构型是____________,属于非极性分子的氧化物是___________。
(3)在溶液中Cu2+易与水形成[Cu(H2O)6]2+而显蓝色,向相应的溶液中加入足量的氨水可得到[Cu(NH3)4(H2O)2]2+,则[Cu(NH3)4(H2O)2]2+中Cu2+的配位数是________________,氧铜配位键与氮铜配位键相比,较稳定的是___________________。
(4)氧化铜的熔点为1326℃、沸点为1800℃;氧化亚铜的熔点为1235℃、沸点为1100℃,试解释导致这种差异最可能的原因是___________。
(5)由铁、铜、硫形成的某种化合物的晶胞是一个长方体,结构如图所示,则该化合物的化学式为____________。若晶体密度为dg·cm﹣3,则晶胞的高h=_______pm(写出简化后的计算式即可)。
3、碳及其化合物广泛存在于自然界中,回答下列问题:
(1)处于一定空间运动状态的电子在原子核外出现的概率密度分布可用形象化描述___________;
(2)碳在形成化合物时,其键型以共价键为主,原因是___________;
(3)C2H2 分子中,共价键的类型有___________,C 原子的杂化轨道类型是___________,写出两个与C2H2 具有相同空间构型含碳无机物分子的分子式___________;
( 4 )CO 能与金属Fe、Ni 分别形成Fe(CO)5、Ni(CO)4,Fe(CO)5 中Fe 元素的原子核外电子排布为______,Ni(CO)4 是无色液体,沸点42.1℃,熔点-19.3℃,难溶于水,易溶于有机溶剂推测Ni(CO)4 是___________晶体。
(5)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示:
①在石墨烯晶体中,每个C 原子连接___________个六元环,每个六元环占有___________个C 原子.
②在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接___________个六元环,六元环中最多有___________个C 原子在同一平面。
4、下列是某无色水样成分的检验,已知该水样中只可能含K+、Mg2+、Fe3+、Cu2+、Ag+、Ca2+、C、S
、Cl-中的若干种离子,该小组同学取100 mL水样进行实验:向样品中先滴加硝酸钡溶液,再滴加1 mol·L-1硝酸,实验过程中沉淀质量的变化如下图所示:
(1)水样中一定含有的阴离子是 ,其物质的量浓度之比为 。
(2)写出BC段曲线所表示反应的离子方程式:
。
(3)由B点到C点变化过程中消耗硝酸的体积为 。
(4)试根据实验结果推测K+是否存在? (填“是”或“否”);若存在,K+的物质的量浓度c(K+)的范围是 (若K+不存在,则不必回答)。
(5)设计简单实验验证原水样中可能存在的离子:(写出实验步骤、现象和结论)
。
5、将亚硒酸与高锰酸钾共热可制得硒酸(H2SeO4),配平该反应方程式,并标出电子转移的方向和数目__________。
____H2SeO3 +____KMnO4 →____K2SeO4+____MnSeO4+____H2SeO4+____
6、工业由钛铁矿(主要成分FeTiO3,Fe2O3、Al2O3、FeO、SiO2等杂质)制备TiCl4的工艺流程如下:
已知:
①酸浸 FeTiO3(s)+2H2SO4(aq)=FeSO4(aq)+TiOSO4(aq)+2H2O(l)
②水解 TiOSO4(aq)+2H2O(l)H2TiO3(s)+H2SO4(aq)
③煅烧 H2TiO3(s)TiO2(s)+H2O(s)
(1)FeTiO3中钛元素的化合价为 ,试剂A为 。
(2)碱浸过程发生反应的离子反应方程式为 。
(3)酸浸后需将溶液温度冷却至70℃左右,若温度过高会导致最终产品吸收率过低,原因是 。
(4)上述流程中氯化过程的化学反应方程式为 。
已知TiO2(s)+2Cl2(g)TiCl4(l)+O2(g) △H=+151kJ·mol-1。该反应极难进行,当向反应体系中加入碳后,则反应在高温条件下能顺利发生。从化学平衡的角度解释原因是 。
(5)TiCl4极易水解,利用此性质可制备纳米级TiO2·xH2O,该反应的化学反应方程式是 。
7、碳、硅两元素广泛存在于自然界中.请回答下列问题:
(1)基态14C原子的核外存在________对自旋方向相反的电子,硅原子的电子排布式为__________。
(2)晶体硅的结构与全刚石非常相似。晶体硅硅中硅原子的杂化方式为_______杂化;金刚石、晶体硅和金刚砂(碳化硅)的熔点由高到低的顺序为_____________。
(3)科学研究结果表明,碳的氧化物CO2能够与H2O借助子太阳能制备HCOOH。其反应原理如下:2CO2+2H2O=2HCOOH+O2,则生成的HCOOH分子中δ键和π键的个数比是_______。
(4)碳单质有多种形式,其中C60、石墨烯与金刚石晶体结构如图所示:
①C60、石墨烯与金刚石互为_________。
②C60形成的晶体是分子晶体,C60分子中含有12个五边形和20个六边形,碳与碳之间既有单键又有双键,已知C60分子所含的双键数为30,则C60分子中_______个C—C 键(多面体的顶点数、面数和棱边数的关系,遵循欧拉定理:顶点数+面数-棱边数=2)。在石墨烯晶体中,每个C原子连接______个六元环;在金刚石晶体中,每个C原子连接的最小环也为六元环,六元环屮最多有_______个C原子在同一平面。
③金刚石晶胞含有______个碳原子。若碳原子的半径为r,金刚石晶胞的边长为a,根据硬球接触模型,则r=______a,列式表示碳原子在晶胞中的空间占有率为_______(不要求计算结果)。
8、以磷石膏(只要成分CaSO4,杂质SiO2、Al2O3等)为原料可制备轻质CaCO3。
(1)匀速向浆料中通入CO2,浆料清液的pH和c(SO42-)随时间变化见由右图。清液pH>11时CaSO4转化的离子方程式_____________;能提高其转化速率的措施有____(填序号)
A.搅拌浆料 | B.加热浆料至100℃ |
C.增大氨水浓度 | D.减小CO2通入速率 |
(2)当清液pH接近6.5时,过滤并洗涤固体。滤液中物质的量浓度最大的两种阴离子为______和________(填化学式);检验洗涤是否完全的方法是_________。
(3)在敞口容器中,用NH4Cl溶液浸取高温煅烧的固体,随着浸取液温度上升,溶液中c(Ca2+)增大的原因___________。
9、已知A、B、C、D、E、F六种元素的原子序数依次递增,前四种元素为短周期元素。A位于元素周期表s区,电子层数与未成对电子数相等;B基态原子中电子占据三种能量不同的原子轨道,且每轨道中的电子总数相同;D原子核外成对电子数为未成对电子数的3倍;F位于第四周期d区,最高能级的原子轨道内只有2个未成对电子;E的一种氧化物具有磁性。
(1)E基态原子的价层电子排布式为__________________。第二周期基态原子未成对电子数与F相同且电负性最小的元素名称为____________。
(2)CD3- 的空间构型为_______________。
(3)A、B、D三元素组成的一种化合物X是家庭装修材料中常含有的一种有害气体,X分子中的中心原子采用_____________杂化。
(4)F(BD)n的中心原子价电子数与配体提供电子总数之和为18,则n=________。根据等电子原理,B、D 分子内σ键与π键的个数之比为______________。
(5)一种EF的合金晶体具有面心立方最密堆积的结构。在晶胞中,F位于顶点,E位于面心,该合金中EF的原子个数之比为_________________。若晶胞边长a pm,则合金密度为______________g·cm3(列式表达,不计算)。
10、叠氮化钠(NaN3)是一种白色剧毒晶体,是汽车安全气囊的主要成分;易溶于水,微溶于乙醇,水溶液呈弱碱性,能与酸发生反应产生具有爆炸性的有毒气体叠氮化氢。实验室可利用亚硝酸叔丁酯(t-BuNO2,以t-Bu表示叔丁基)与N2H4、氢氧化钠溶液混合反应制备NaN3。
(1)用化学语言解释NaN3溶液呈弱碱性的原因:__________。
(2)制备NaN3
按图示组装仪器(加热装置略)进行反应,反应的化学方程式为:。
①装置a的名称是____________;
②反应后溶液在下冷却至有大量晶体析出后过滤。所得晶体使用_______洗涤;
③试解释低温下过滤的原因是__________。
(3)产率计算
①称取2.0g NaN3试样,配成100mL溶液,并量取10.00mL溶液于锥形瓶中。
②用滴定管加入0.10mol/L(NH4)2Ce(NO3)6溶液40.00mL (假设杂质均不参与反应)。
③充分反应后将溶液稀释并酸化,滴入2滴邻菲罗啉指示液,并用0.10mol/L(NH4)2Fe(SO4)2标准液,滴定过量的Ce4+,终点时消耗标准溶液20.00mL(滴定原理:Ce4++Fe2+=Ce3++Fe3+)。
i.配平(NH4)2Ce(NO3)6与叠氮化钠反应方程式:
____(NH4)2Ce(NO3)6+____ NaN3=____NH4NO3+____Ce(NO3)3____NaNO3+____N2↑;
ii.计算NaN3的质量分数为____(保留2位有效数字);
iii.下列操作会导致所测定样品中NaN3质量分数偏大的是_________。
A.锥形瓶使用叠氮化钠溶液润洗
B.滴加(NH4)2Ce(NO3)6溶液时,滴加前俯视读数,滴加后仰视读数
C.滴定过程中,将挂在锥形瓶壁上的(NH4)2Ce(NO3)6标准液滴用蒸馏水冲进瓶内
(4)分析不直接用酸性高锰酸钾滴定NaN3可能的原因是_________。
(5) NaN3有毒,可以使用NaClO溶液对含有NaN3的溶液进行销毁,反应产生无色无味的无毒气体,试写出反应的离子方程式_________。
11、称取软锰矿样品0.1000 g。对样品进行如下处理:
①用过氧化钠处理,得到MnO42-溶液。
②煮沸溶液,除去剩余的过氧化物。
③酸化溶液,MnO42-歧化为MnO4-和MnO2。
④滤去MnO2。
⑤用0.1000 mol·L-1 Fe2+标准溶液滴定滤液中MnO4-,共用去25.80 mL。
计算样品中MnO2的质量分数______(保留1位小数);写出简要的计算过程。
12、我国提出争取在2030年前实现碳达峰、2060年前实现碳中和,这对于改善环境、实现绿色发展至关重要。将CO2转化为清洁能源是实现碳中和最直接有效的方法。
方法一:H2还原CO2制取CH4.其反应体系中,主要发生反应的热化学方程式有:
反应I:CO2(g)+4H2(g)CH4(g)+2H2O(g) ΔH1=−164.7 kJ∙mol−1
反应II:CO2(g)+H2(g)CO(g)+H2O(g) ΔH2=+41.2 kJ∙mol−1
反应III:2CO(g)+2H2(g)CO2(g)+CH4(g) ΔH3=−247.1 kJ∙mol−1
(1)利用上述反应计算CO(g)+3H2(g)CH4(g)+H2O(g)的ΔH_______,已知ΔG=ΔH−TΔS,忽略ΔH、ΔS随温度的变化,若ΔG<0反应自发,则该反应一般在_______(填“高温”“低温”或“任何温度”)下能自发进行。
(2)向恒压、密闭容器中通入1molCO2和4molH2,平衡时体系内CH4、CO、CO2的物质的量(n)与温度(T)的变化关互系如图所示。
①结合上述反应,解释图中CO2的物质的量随温度的升高先增大后减小的原因:_______;
②一定条件下,经tmin平衡后,n(CO)=0.15mol,n(CO2)=0.25mol,甲烷的选择性(×100%)=_______;
③在实际生产中为了提高化学反应速率和甲烷的选择性,应当_______。
方法二:H2还原CO2制取CH3OH。反应原理为:CO2(g)+3H2(g)CH3OH(g)+H2O(g) ΔH4
(3)CO2催化加氢制CH3OH的一种反应机理历程如图所示(吸附在催化剂表面的物质用“*”标注,如“*CO2”表示CO2吸附在催化剂表面,图中*H已省略)
该反应历程中决速步反应能垒为_______eV,为避免产生副产物,工艺生产的温度应适当_______(填“升高”或“降低”)。
(4)已知速率方程υ正=k正·c(CO2)·c3(H2),υ逆=k逆·c(CH3OH)·c(H2O),k正、k逆是速率常数,只受温度(T)影响。如图表示速率常数的对数lgk与温度的倒数之间的关系,则ΔH4_______0(填“>”“<”或“=”)。
13、V、Cr、Mn的合金及其化合物在工业和生活中有广泛的用途。请回答下列问题:
(1)基态Cr原子的外围电子排布式为________,Cr元素属于____________区元素。
(2)V有+2、+3、+4、+5等多种化合价,其中最稳定的化合价是________,V的第三电离能I₃(V)小于 Mn 的第三电离能I₃( Mn),原因是_________。
(3)锰的一种配合物的化学式为[Mn(CO)₄(NH₃)(CH₃CN)],该配合物中非金属元素的电负性由小到大的顺序为________;配体CH₃CN与中心原子形成配位键时,提供孤电子对的是___________(填元素符号),该分子中碳原子的杂化方式为_______;NH₃分子与 Mn 原子形成配合物后H-N-H 的键角_______(填“变大”“变小”或“不变”)。
(4)一种Mn与S构成的化合物为立方晶系晶体,晶胞截面图如图所示(图中所给数据为y轴坐标)。
在该晶胞中,硫原子的堆积方式为________。Mn填充在S构成的空隙中,空隙的空间形状为________。晶胞中最近两个硫原子之间的距离为aÅ(1Å=10-10m),晶体密度为dg·cm-3则阿伏加德罗常数的值为_________。
邮箱: 联系方式: