1、如图,热气球的探测器显示,从热气球处看一栋楼顶部
处的仰角为30°,看这栋楼底部
处的俯角为60°,热气球
处与楼的水平距离为
,则这栋楼的高度为( )
A.
B.
C.
D.
2、x7可以表示为( ).
A.x3+ x4
B.x3·x4
C.x14÷x2
D.(x3)4
3、要使二次根式有意义,x必须满足( )
A. x≤2 B. x≥2 C. x<2 D. x>2
4、随着新冠肺炎在全球蔓延,粮食安全与国际粮食贸易等问题再次引起广泛的关注,2020年4月4日,国务院联防联控机制召开新闻发布会,介绍疫情期间粮食供给和保障工作情况,农业农村部发展规划司魏百刚给出了定心丸:“我国粮食连年丰收,已连续5年稳定在1.3万亿斤以上,口粮保障绝对安全”,1.3万亿用科学记数法表示为( ).
A. B.
C.
D.
5、【阅读理解】在求阴影部分面积时,常常会把原图形的一部分割下来补在图形中的另一部分,使其成为基本规则图形,从而使问题得到解决,这种方法称为割补法.如图1,C是半圆O的中点,欲求阴影部分面积,只需把弓形BC割下来,补在弓形处,则
.
【拓展应用】如图2,以为直径作半圆O,C为
的中点,连接
,以
为直径作半圆P,交
于点D.若
,则图中阴影部分的面积为( )
A.
B.
C.
D.
6、在△ABC中,∠A,∠B都是锐角,且sinA=, cosB=
,则△ABC是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
7、如图,△ABC和△AʹBʹCʹ位似,位似中心为点O,点A(-1,2)、点A′(2,-4),若△ABC的面积为4,则△AʹBʹCʹ的面积是( )
A.2
B.4
C.8
D.16
8、在矩形ABCD中,AB=3,BC=10,P是BC上的动点(不与B,C重合),以A为圆心,AP长为半径作圆A,若经过点P的圆A的切线与线段AD交于点F,则以DF,BP的长为对角线长的菱形的最大面积是( )
A. 4 B. 8 C. 12. 5 D. 16
9、的倒数是( ).
A.3
B.
C.
D.
10、若正比例函数,当
的值减小
,
的值就减小
,则当
的值增加
时,
的值( )
A.增加 B.减小
C.增加
D.减小
11、若代数式有意义,则x的取值范围是_____________
12、在背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图像不过第四象限的卡片的概率是__________.
13、如图所示的正八边形是用八个全等的等腰三角形拼成的,,则正八边形的面积为________.
14、我市百年梨乡计划种植一批梨树,原计划总产值为30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意列方程为 __________________.
15、如图,在△ABC中,DE∥BC,,AD=2,则BD的长为_______.
16、如图,在平面直角坐标系中,点、
、
、
依次在
轴上,点
、
的坐标分别是
、
.以点
为圆心,
长为半径画弧,再以点
为圆心,
长为半径画弧,两弧相交于点
,测得
,
.则点
的横坐标是__________.
17、如图,A,B,D依次在同一条直线上,在AD的同侧作,
,
.
(1)求证:.
(2)若,求CE的长.
18、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.
(1)求证:△ACD∽△BFD;
(2)当tan∠ABD=1.2,AC=3时,求BF的长.
19、学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边与另一边
之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
20、某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节木龙头50天的日用水量,得到频数分布表如下:
表1未使用节水龙头50天的日用水量频数分布表
日用水量x | 0≤x<0.1 | 0.1≤x<0.2 | 0.2≤x<0.3 | 0.3≤x<0.4 | 0.4≤x<0.5 | 0.5≤x<0.6 | 0.6≤x≤0.7 |
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
表2使用了节水龙头50天的日用水量频数分布表
日用水量x | 0≤x<0.1 | 0.1≤x<0.2 | 0.2≤x<0.3 | 0.3≤x<0.4 | 0.4≤x<0.5 | 0.5≤x<0.6 |
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)估计该家庭使用节水龙头后,日用水量小于0.3 m3的概率;
(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)
21、观察下列等式:
第1个等式:
第2个等式:
第3个等式:
第4个等式:
……
按照以上规律,解决下列问题:
(1)写出第(5)个等式
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
22、如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.
23、计算:﹣|﹣4|﹣(3﹣π)0
24、如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
邮箱: 联系方式: