1、如图,已知抛物线的对称轴为直线
,与x轴的两个交点是A,B,其中点A的坐标为
,则下列结论:①
;②
;③点B的坐标是
;④点
、
是抛物线上的两点,若
,则
,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
2、下列运算正确的是( )
A.4a-a=3
B.2(2a-b)=4a-b
C.(a+b)2=a2+b2
D.(a+2)(a-2)=a2-4
3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A、 B、
C、
D、
4、关于二次函数的三个结论,①图象与y轴的交点为
;②对任意实数m,都有
与
对应的函数值相等;③图象经过点
;其中,正确结论是( )
A.①②
B.②③
C.①③
D.①②③
5、如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于( )
A.32°
B.38°
C.52°
D.66°
6、如图,已知A、B两点在数轴上所对应的数分别是2、,点C是数轴上一点,且AC=
BC,则点C所对应的数是( )
A.0 B. C.0或6 D.0或8
7、张老师随机抽取九年级(3)班5名学生的数学网课检测成绩(单位:分)如下:80,98,98,83,91,关于这组数据的说法错误的是( )
A.众数是98 B.平均数是90 C.中位数是91 D.方差是56
8、2020年是贵州省发展进程中极不平凡的一年,在以习总书记同志为核心的党中央坚强领导下,在贵州省委的直接领导下,我省的脱贫攻坚工作交出了满意的答卷,共有192万人通过易地扶贫搬迁搬出了大山,从根本上改变了生存环境和发展条件.请将192万用科学记数法表示为( )
A.
B.
C.
D.
9、如图,AB∥CD,则根据图中标注的角,下列关系中成立的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠2+∠4<180° D.∠3+∠5=180°
10、下面计算正确的是( )
A. a4•a2=a8 B. (a3)2=a9 C. a6÷a2=a3 D. a2+a2=2a2
11、当与
时,代数式
的值相等,则
时,代数式
的值为_____________.
12、如图,中,
,
,
为线段
上一动点,连接
,过点
作
于
,连接
,则
的最小值为________.
13、定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1=﹣x2时,都有y1=y2,称该函数为偶函数,根据以上定义,可以判断下面所给的函数中,是偶函数的有__(填上所有正确答案的序号).
①y=2x; ②y=﹣x+1; ③y=x2; ④y=﹣;
14、分解因式:_____.
15、如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tan∠B=_______.
16、如图,AB是☉O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE等于____.
17、如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP的对称点为E,连接BE、DE,其中DE交直线AP于点F.
(1)依题意补全图1.
(2)若∠PAB=30°,求∠ADF的度数.
(3)如图,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.
18、网络时代,新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名路人.
(2)补全条形统计图;
(3)扇形图中的b= .
19、(1)计算: ;(2)化简:
。
20、如图,△ABC是⊙O的内接三角形.AE是⊙O的直径,交BC于点G.过点A作AF⊥BC,AF分别与BC、⊙O交于点D、F,连接BE、CF.
(1)求证:∠BAE=∠CAF;
(2)若AB=8,AC=6,AG=5,求AF的长.
21、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) | 15 | 20 | 30 | … |
y(件) | 25 | 20 | 10 | … |
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)是销售价x(元)的函数关系式;
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?
22、如图,一次函数y=x+m与反比例函数y=的图象相交于A(2,1),B两点.
(1)求m及k的值;
(2)不解关于x,y的方程组,直接写出点B的坐标;
(3)看图象直接写出,x+m>时,自变量x的取值范围.
23、如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.
(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
24、如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.
(1)如图1,当点P在边BC上时:
①若∠BAP=30°,求∠AFD的度数;
②若点P是BC边上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;
(2)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论;
(3)是否存在这样的情况,点E为线段DF的中点,如果存在,求BP的值;如果不存在,请说明理由.
邮箱: 联系方式: