1、下列图案中既是轴对称又是中心对称图形的是( )
A. B.
C.
D.
2、若x=0是关于x的一元二次方程(a+2)x2- x+a2+a-6=0的一个根,则a的值是( )
A.a ≠2 B.a=2 C.a=-3 D.a=-3或a=2
3、在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=60°,OB=2cm,那么矩形ABCD的面积为( )
A.cm
B.2cm
C.3cm
D.4cm
4、如图,在中,
,
,以点
为圆心,任意长为半径画弧,分别交
,
于点
,
,再分别以点
,
为圆心,大于
的长为半径画弧,两弧交于点
,连接
并延长交
于点
,则下列说法中正确的个数是( )
①是
的平分线;②
;③点
在
的垂直平分线上;④
.
A.1
B.2
C.3
D.4
5、下列各组线段中,不能成比例的是( )
A. a=3,b=6,c=2,d=4 B. a=1,b=2,c=6,d=3
C. a=4,b=6,c=5,d=10 D. a=2,b=5,c=15,d=6
6、我国古代有很多经典的数学题,其中有一道题目是:良马日行二百里,驽马日行一百二十里,驽马先行十日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里,慢马先走10天,快马几天可追上慢马?若设快马天可追上慢马,则由题意可列方程为( )
A.
B.
C.
D.
7、如图,梯子(长度不变)跟地面所成的锐角为∠A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是( )
A.sinA的值越大,梯子越陡
B.cosA的值越大,梯子越陡
C.tanA的值越小,梯子越陡
D.陡缓程度与∠A的三角函数值无关
8、小明解一道一元一次方程的步骤如下:
.
解:
6﹣(x+2)=2(2x﹣5)+6x②
6﹣x﹣2=4x﹣10+6x③
﹣x﹣4x﹣6x=﹣10﹣6+2④
﹣11x=﹣14⑤
以上6个步骤中,其依据是等式的性质有( )
A.①②④
B.②④⑥
C.③⑤⑥
D.①②④⑥
9、徐州市12月份某天的最高气温是6℃,最低气温是﹣4℃,则这一天的温差是( )
A. ﹣10℃ B. ﹣6℃ C. 6℃ D. 10℃
10、已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.15cm B.20cm C.25cm D.30cm
11、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是________.
12、如果向东走记作
,那么向西走
记作 _____
.
13、(1)________;
(2)________.
14、要使函数y=2xn﹣1+3是一次函数,则n的值为 ___.
15、请写出一个无实数根的一元二次方程_________
16、如图,是
的中线,
是
的中点,若
的面积为8,则
的面积为______.
17、(1)
(2)
(3)m-4(3-2m);
(4)2(a2-2b)-3(2b-a2).
18、计算:
(1);
(2)
19、如图,在平行四边形中,连接对角线
,
交
于点E,交
于点G.
(1)用尺规完成以下基本作图:过点C作的垂线,交
于点F,交
于点H;(不写作法,保留作图痕迹)
(2)在(1)所作的图形中,求证:.(请补全下面的证明过程)
证明:∵四边形是平行四边形,
∴,
∴______①______
∵
∴
∵
∴
∵______②______
∴,
.
即______③______
∴
∴______④______
∴
∴.
20、已知,三角形ABC在平面直角坐标系中的位置如图所示,点A(﹣2,3),B(2,1),C(0,5).
(1)画出三角形ABC先向右平移4格,再向上平移3格得到的三角形A1B1C1;
(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A1B1C1内的对应点P1的坐标是 ;
(3)求三角形ABC面积.
21、观察下列等式:
,
,
.
将以上三个等式的两边分别相加,得:
.
(1)直接写出计算结果:=________.
(2)计算:.
(3)猜想并直接写出:=________.(n为正整数)
22、小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.
(1)求买一支康乃馨和一支百合各需多少元?
(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为元,康乃馨有
支,求
与
之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.
23、某商场用12 000元购进大、小书包各200个,每个小书包比大书包的进价少20元.在销售过程中发现,小书包每天的销量y1(单位:个)与其销售单价x(单位:元)有如下关系:y1=-x+76,大书包每天的销量y2(单位:个)与其销售单价z(单位:元)有如下关系:y2=-z+80,其中x,z均为整数.商场按照每个小书包和每个大书包的利润率相同的标准确定销售单价,并且销售单价均高于进价(利润率=).
(1)求两种书包的进价;
(2)当小书包的销售单价为多少元时,两种书包每天销售的总利润相同;
(3)当这两种书包每天销售的总利润的和最大时,直接写出此时小书包的销售单价.
24、如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE的延长线于点G.
(1)求证:DB=BG;
(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG。
邮箱: 联系方式: