1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、利用液化石油气中的丙烷脱氢可制取丙烯:C3H8(g)C3H6 (g)+H2 (g) △H。起始时,向一密闭容器中充入一定量的丙烷,在不同温度、压强下测得平衡时反应体系中丙烷的物质的量分数如图所示(已知pl为0.1 MPa)。
(1)反应的△H_________(填“>”“<”或“=’’,下同)
(2)以丙烯为燃料、熔融碳酸盐为电解质制作新型电池,放电时CO32-移向该电池的______(填“正极,或“负极”),当消耗2.8 L(标准状况)C3H6时,电路中转移电子的物质的量为__________。
(3)根据图中B点坐标计算,556℃时该反应酌平衡常数为______Pa(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数),若图中A、B两点对应的平衡常数用K(A)、K (B)表示,则K(A) _____(填“>” “<”或“=”)K(B)。
3、纳米级Cu2O由于具有优良的催化性能而受到关注,采用肼(N2H4)燃料电池为电源,用离子交换膜控制电解液中c(OH-)制备纳米Cu2O,其装置如图甲、乙。
(1)上述装置中D电极应连接肼燃料电池的________极(填“A”或“B”),该电解池中离子交换膜为________离子交换膜(填“阴”或“阳”)。
(2)该电解池的阳极反应式为________________________________________,
肼燃料电池中A极发生的电极反应为____________________________。
(3)当反应生成14.4 g Cu2O时,至少需要肼________ mol。
4、随着社会经济的发展,人们生活水平的提高和对环境要求的加强,来源广泛的高氨氮废水(主要含有NH4+)处理越来越受到重视。对于高氨氮废水的处理有多种方法。
(1)吹脱法:
使用吹脱法时需要在①中加入碱,写出发生的离子反应方程式______________________。
(2)MAP沉淀法:
①使用化学沉淀剂处理高氨氮废水时,向高氨氮废水中投入含有Mg2+的物质和H3PO4,调节溶液pH,与NH4+反应生成MgNH4PO4(MAP)沉淀。为有效控制溶液PH,并考虑污水处理效果,则最好选用下列物质中_____。
A MgO B MgSO4 C MgCl2
②控制溶液PH的合理范围为____________________
③从溶解平衡角度解释PH过高或过低不易形成沉淀MAP的原因(已知PO43-在酸性较强条件下以HPO42-形式存在)_______________
(3)生物脱氮传统工艺:
①在有氧气的条件下,借助于好氧微生物(主要是好氧菌)的作用生成NO3-,写出反应的离子方程式_________________________。
②在无氧的酸性条件下,利用厌氧微生物(反硝化菌)的作用使NO3-与甲醇作用生成N2,达到净化水的目的。写出离子方程式____________________________。
5、简要回答下列问题。
(1)金属钠通常保存在煤油中的原因是__________。
(2)氢气被称为理想“绿色能源”的原因是________。
(3)垃圾分类处理已成为新时尚。废电池必须集中回收处理的原因是___。
6、重铬酸钾是工业生产和实验室的重要氧化剂,工业上常用铬铁矿(主要成分为FeO·Cr2O3)为原料生产,实验室模拟工业法用铬铁矿制K2Cr2O7的主要工艺如下,请回答下列问题:
(1)以上工艺流程所涉及元素中属于过渡元素的有________,铁在周期表中的位置是第______周期______族。
(2)在反应器①中,有Na2CrO4生成,同时Fe2O3转变为NaFeO2,杂质SiO2、Al2O3与纯碱反应转变为可溶性盐,写出氧化铝与碳酸钠反应的化学方程式:_________________。
(3)NaFeO2能发生强烈水解,在步骤②中生成沉淀而除去,写出该反应的化学方程式:_________________。
(4)流程④中酸化所用的酸和流程⑤中所用的某种盐最合适的是____________(填字母)。
A.盐酸和氯化钾 B.硫酸和氯化钾 C.硫酸和硫酸锌 D.次氯酸和次氯酸钾
酸化时,CrO转化为Cr2O
,写出平衡转化的离子方程式:________________。
(5)水溶液中的H+是以H3O+的形式存在,H3O+的电子式为_____________。
(6)简要叙述操作③的目的:________________。
7、(1)醋酸可通过分子间氢键双聚形成八元环,画出该结构_____。(以 O…H—O 表示氢键)
(2)已知碳化镁 Mg2C3可与水反应生成丙炔,画出 Mg2C3的电子式_____。
(3)工业上,异丙苯主要通过苯与丙烯在无水三氯化铝催化下反应获得,写出该反应方程式_____。
(4)将乙酸乙酯与H218O混合后,加入硫酸作催化剂,乙酸乙酯在加热条件下将发生水解反应,写出产物中不含18O的物质的结构简式_____。
8、碳、镁、镍在工业生产和科研领域有广泛用途。请回答下列问题:
(1)基态碳原子中,能量最高的电子所占用的能级符号为_________;该能级中原子轨道的电子云形状为______________________。
(2)从石墨中可剥离出由单层碳原子构成的石墨烯,石墨烯中碳原子和共价键的数目之比为________。
(3)Mg2+能形成多种配合物和配离子,如Na4[Mg(PO3)4]、Mg[EDTA]2- EDTA的结构简式为()等。
①PO3-的立体构型为____________,其中心原子的杂化轨道类型为__________,其中杂化轨道的作用为__________________________。
②是常用的分析试剂。其中位于同周期的三种基态原子第一电离能由小到大的顺序为________________(用元素符号表示);这三种元素形成的一种离子与CS2互为等电子体,该离子符号为_____________。
(4)晶体镁的堆积模型为____________;其中镁原子的配位数为______________。
(5)碳、镁、镍形成的某晶体的晶胞结构如图所示。若晶体密度为ρg·cm-1,阿伏伽德罗常数的值为NA,则晶胞参数a=___________pm(用代数式表示)。
9、A、B、C、D、E、F均为周期表中前四周期的元素。请按要求回答下列问题。
(1)已知A和B为第三周期元素,其原子的第一至第四电离能如下表所示:
下列有关A、B的叙述不正确的是(____)a.离子半径A<B b.电负性A<B
c.单质的熔点A>B d.A、B的单质均能与氧化物发生置换
e.A的氧化物具有两性 f.A、B均能与氯元素构成离子晶体
(2)C是地壳中含量最高的元素,C基态原子的电子排布式为_______。Cn-比D2+少l个电子层。二者构成的晶体的结构与NaCl晶体结构相似(如图一所示),晶体中一个D2+周围和它最邻近且等距离的D2+有_____个。
(3)E元素原子的最外层电子数是其次外层电子数的2倍,则乙酸分子中E原子的杂化方式有_____。E的一种单质其有空间网状结构,晶胞结构如图2。己知位于晶胞内部的4个原子,均位于体对角线的1/4或3/4处,E-E键长为apm,则E晶体的密度为_________g/cm3(用含有NA、a的式子表示)。
(4)F与硒元素同周期,F位于p区中未成对电子最多的元素族中,F的价电子排布图为
______,FO33-离子的空间构型为__________;F第一电离能_______硒元素(填“>”或“<”)
10、室温下(20oC))课外小组用下列装置探究铁和硝酸反应情况,过程如下图所示:
将Ⅲ中液面上的气体排入小试管中点燃,有尖锐爆鸣声,小试管壁出现液滴。取反应后溶液,加入足量NaOH 溶液得到灰绿色沉淀。煮沸时,蒸气带有刺激性气味并能使湿润红色石蕊试纸变蓝。
(1)X气体是______ (填化学式),证据是________。
(2)实验中硝酸被还原成另一种产物的化学方程式_____。
(3)甲同学对产生的气体原因提出假设并设计方案:
假设1:该浓度的硝酸中H+的氧化性大于NO3-
假设2:H+还原反应速率大于NO3-的还原反应速率
I. 验证假设1:可用____(选 “ Cu” 或“Zn”)粉与同浓度硝酸反应,依据 ____________ ,则假设1不成立。
II. 验证假设2:改变条件重复上图过程实验,结果如下:(所用试剂的量、气体成分与实验上图相同)
序号 | 反应温度 | 实验结果 |
a | 40oC | 溶液浅绿色,收集气体为3.4mL |
b | 60oC | 溶液浅绿色,收集气体为2.6mL |
上表实验结果_____(填“能”或“否”)判断假设2成立。由实验数据结果分析温度对铁粉与硝酸反应时对生成X体积的影响的原因___________。
(4)常温下(20℃),乙同学改用3mol·L–1 HNO3 进行图1过程实验,Ⅱ中仍为无色气体,在Ⅲ中气体变红色。由此得出的相关结论正确的是______ 。
a. 该实验产生的无色气体只有NO
b. 若改用浓硝酸时,反应会更剧烈还原产物为NO2
c. 硝酸的浓度不同时,其主要还原产物不同
(5)综上所述,金属与硝酸生成X气体,需要控制的条件是___________ 。
11、为测定 K2[Cu(C2O4)2]·2H2O(M=354g/mol)含量,准确称取试样1.000g溶于 NH3·H2O中,并加水定容至250mL,取试样溶液25.00mL于锥形瓶中,再加入10mL 3.000mol/L的H2SO4溶液,用0.01000mol/L的KMnO4溶液滴定,重复试验,平均消耗 KMnO4标准液20.00mL。已知:C2O42-酸性条件下被MnO4-氧化为CO2,杂质不参加反应。该样品中K2[Cu(C2O4)2]·2H2O的质量分数为____________(保留小数点后两位) ,写出简要计算过程:__________________。
12、酚和芳香胺有广泛用途。
资料:i.苯酚分子中O的杂化轨道类型是sp2,未参与杂化的p轨道中有一对电子,该p轨道正好与苯环的π电子轨道发生侧面重叠,形成p-π共轭体系(大π键),使O的电子向苯环转移。
ii.苯胺分子结构与苯酚有相似之处,N的孤对电子占据的轨道也和苯环的π电子轨道部分重叠,形成共轭体系。
(1)p电子云轮廓图的形状是_______。
(2)C、H、O三种元素的电负性由强到弱的顺序是_______。
(3)比较相同条件下,苯酚与氯苯在水中的溶解度并说明理由:_______。
(4)苯胺分子中的原子不在同一平面内,N的杂化轨道类型是_______。
(5)下列说法正确的是_______(填序号)。
a.第一电离能: O>N>C
b.苯酚具有酸性与分子中的p-π共轭有关
c.苯胺的碱性比氨强
d.苯胺可能与溴水发生取代反应
(6)80℃,有CuI存在时,邻氨基苯酚与碘苯可发生反应生成邻羟基二苯胺,过程如下:
①基态Cu+的价电子排布式是_______,CuI的作用是_______。
②用对硝基碘苯为原料与邻氨基苯酚反应,所需实验温度_______80℃ (填“>”或“<”)。
③增大碘苯与邻氨基苯酚的物质的量之比,使碘苯显著过量,则反应的主产物是X。
i.X的结构简式是_______。
ii.生成X的反应比生成邻羟基二苯胺的_______ (填 “易”或“难”),理由是_______。
13、我国已经形成对全球稀土产业链的统治力,在稀土开采技术方面,我国遥遥领先。同时也是最早研究稀土—钴化合物结构的国家。请回答下列问题:
(1)钴原子的价层电子排布图为_______,其M层上共有_______个不同运动状态的电子。Fe和Co的第四电离能I4(Fe)_______I4(Co)(填“>”、“<”或“=”)。
(2)①为某含钴配合物的组成为CoCl3·5NH3·H2O,是该配合物中钴离子的配位数是6。1mol该配合物可以与足量的硝酸银反应生成3molAgCl沉淀,则该配合物的配体是_______,其中氮原子的杂化类型为_______。试判断NH3分子与钴离子形成配合物后,H—N—H键角会_______ (填“变大”、“变小”或“不变”),并说明理由_______。
②某含钴配合物化学式为CoCl3·3NH3,该配合物在热NaOH溶液中发生反应产生絮状沉淀,并释放出气体,该反应的化学方程式为_______。该配合物中存在的化学键有_______(填字母)。
A.共价键 B.σ键 C.π键 D.配位键
(3)一种铁氮化合物具有高磁导率,其结构如图所示:
①该结构中单纯分析铁的堆积,其堆积方式为_______。
②已知A点的原子坐标参数为(0,0,0),B点的原子坐标参数为(),则C点的原子坐标参数为_______。
邮箱: 联系方式: