1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、非金属元素在化学中具有重要地位,请回答下列问题:
(1)氧元素的第一电离能比同周期的相邻元素要小,理由________。
(2)元素X与硒(Se)同周期,且该周期中X元素原子核外未成对电子数最多,则X为_____(填元素符号),其基态原子的电子排布式为_______。
(3)臭齅排放的臭气主要成分为3-MBT-甲基2丁烯硫醇,结构简式为()1mol 3-MBT中含有
键数目为_______NA(NA为阿伏伽德罗常数的值)。该物质沸点低于(CH3)2C=CHCH2OH,主要原因是_______。
(4)PCl5是一种白色晶体,熔融时形成一种能导电的液体测得其中含有一种正四面体形阳离子和一种正八面体形阴离子;熔体中P-Cl的键长只有198pm和206pm两种,试用电离方程式解释PCl5熔体能导电的原因_________,正四面体形阳离子中键角大于PCl3的键角原因为__________,该晶体的晶胞如图所示,立方体的晶胞边长为a pm,NA为阿伏伽德罗常数的值,则该晶体的密度为_______g/cm 3
3、
铁及其氧化物是日常生活生产中应用广泛的材料。请回答下列问题:
(l)基态铁原子的价电子轨道表达式为__________。
(2)铁元素常见的离子有Fe2+和Fe3+,稳定性Fe2+_______Fe2+(填“大于”或“小于”),原因是________________。
(3)纳米氧化铁能催化火箭推进剂NH4ClO4的分解,NH4+的结构式为______(标出配位键),空间构型为_________,其中氮原子的杂化方式为_______;与ClO4-互为等电子体的分子或离子有__________(任写两种)。
(4)金属铁晶体原子采用________堆积.铁晶体的空间利用率为______(用含π的式子表示)。
(5)某种离子型铁的氧化物晶胞如图所示,它由A、B方块组成。则该权化物中Fe2+、Fe3+、O2-的个数比为_______(填最简整数比);己知该晶体的密度为dg/cm3,阿伏加德罗常数的值为NA,则品胞参数a 为_______nm(用含d 和NA的代数式表示)。
4、锂离子电池广泛应用于日常电子产品中,也是电动汽车动力电池的首选.正极材料的选择决定了锂离子电池的性能.磷酸铁钾(LiFePO4)以其高倍率性、高比能量、高循环特性、高安全性、低成本、环保等优点而逐渐成为“能源新星”。
(1)高温固相法是磷酸铁锂生产的主要方法。通常以铁盐、磷酸盐和锂盐为原料,按化学计量比充分混匀后,在惰性气氛的保护中先经过较低温预分解,再经高温焙烧,研磨粉碎制成。其反应原理如下:
Li2CO3+2FeC2O4•2H2O+2NH4H2PO4═2NH3↑+3CO2↑+______+_______+_______
①完成上述化学方程式.
②理论上,反应中每转移0.15mol电子,会生成LiFePO4______________g;
③反应需在惰性气氛的保护中进行,其原因是______________;
(2)磷酸亚铁锂电池装置如图所示,其中正极材料橄榄石型LiFePO4通过粘合剂附着在铝箔表面,负极石墨材料附着在铜箔表面,电解质为溶解在有机溶剂中的锂盐。
电池工作时的总反应为:LiFePO4+6CLi1-xFePO4+LixC6,则放电时,正极的电极反应式为______________。充电时,Li+迁移方向为______________(填“由左向右”或“由右向左”),图中聚合物隔膜应为______________(填“阳”或“阴”)离子交换膜。
(3)用该电池电解精炼铜。若用放电的电流强度I=2.0A的电池工作10分钟,电解精炼铜得到铜0.32g,则电流利用效率为______________(保留小数点后一位)。(已知:法拉第常数F=96500C/mol,电流利用效率=100%)
(4)废旧磷酸亚铁锂电池的正极材料中的LiFePO4难溶于水,可用H2SO4和H2O2的混合溶液浸取,发生反应的离子方程式为______________。
5、硫、锌及其化合物用途非常广泛。回答下列问题:
(1)基态锌原子的价电子排布式为____________________;锌的第二电离能I2(Zn)小于铜的第二电离能I2(Cu),其原因是____________________________________。
(2)O和S处于同一主族。H2O及H2S中,中心原子的杂化方式相同,键长及键角如图所示。
①H2O分子中的键长比H2S中的键长短,其原因是___________________________。
②H2O分子中的键角∠HOH 比H2S分子中的键角∠HSH 大,其原因是_________________。
(3)单质硫与热的NaOH 浓溶液反应的产物之一为Na2S3。S32-的空间构型为_________,中心原子的杂化方式为_________________。
(4)噻吩( )广泛应用于合成医药、农药、染料工业。
①噻吩分子中含有_______个σ键,分子中的大π键可用符号表示,其中m代表参与形成大π键的原子数,n代表参与形成大π键的电子数(如苯分子中的大π键可表示为
),则噻吩分子中的大π键应表示为______________。
②噻吩的沸点为84 ℃,吡咯( )的沸点在129~131℃之间,后者沸点较高,其原因是__________________________________。
(5)硫化锌是一种半导体材料,其晶胞结构如图所示。
①已知A点的原子坐标参数为(0,0,0);B点的原子坐标参数为(,0,
),则C点的原子坐标参数为__________。
②硫化锌晶体的密度为4.05 g·cm-3,晶胞边长为a nm,设NA 为阿伏加德罗常数的数值,则a=_________(列出计算表达式即可)。
6、化工生产中可用CO2和H2在一定条件下制得烯烃。下图是由煤焦油、CO2和H2合成橡胶和TNT的路线:
请回答下列问题:
(1)工业上煤通过________制取煤焦油。
(2)反应①的反应类型为____________;反应③的反应条件为____________。
(3)烯烃B的名称为________________;E的结构简式为_______________。
(4)D与足量H2在一定条件下反应生成F,F的一氯代物共有_____种。
(5)请写出以CH3COOH、为原料合成化工产品
的路线流程图(无机试剂任选)(提示:卤代苯中苯环上的卤原子很难被取代)。
__________合成路线流程图示例如下:
7、以黄铜矿(主要成分为铁、铜、硫三种元素组成的化合物)为基本原料,通过一系列的冶炼可得到铜、铁、SO2、SO3、H2SO4等物质,回答下列问题:
(1)基态铁原子价层电子排布式为____________,基态硫原子的核外电子共有_______种不同的能量。硫元素所在周期的非金属元素第一电离能由大到小的顺序为__________。
(2)SO2、SO3、H2SO4中,硫原子的杂化轨道类型为sp3的物质是________,SO2的分子构型是____________,属于非极性分子的氧化物是___________。
(3)在溶液中Cu2+易与水形成[Cu(H2O)6]2+而显蓝色,向相应的溶液中加入足量的氨水可得到[Cu(NH3)4(H2O)2]2+,则[Cu(NH3)4(H2O)2]2+中Cu2+的配位数是________________,氧铜配位键与氮铜配位键相比,较稳定的是___________________。
(4)氧化铜的熔点为1326℃、沸点为1800℃;氧化亚铜的熔点为1235℃、沸点为1100℃,试解释导致这种差异最可能的原因是___________。
(5)由铁、铜、硫形成的某种化合物的晶胞是一个长方体,结构如图所示,则该化合物的化学式为____________。若晶体密度为dg·cm﹣3,则晶胞的高h=_______pm(写出简化后的计算式即可)。
8、回答下列问题:
(1)与
熔融时均能导电,但后者室温下呈液态,后者熔点低的原因是_______。
(2)某小组用温度传感器探究正戊烷、正己烷挥发时的温度变化(如图所示),试解释原因_______。
9、单宁酸-硫酸体系中,低品位软锰矿(
质量分数为29%)中的Mn(Ⅳ)可被还原为
而浸出。其浸出过程如图所示。
(1)当完全水解,生成的没食子酸和葡萄糖物质的量之比为___________。
(2)写出葡萄糖还原生成
的离子反应方程式:________________。
(3)浸出前后软锰矿与浸取渣的X-射线衍射图如图所示,衍射峰的强度能一定程度反映晶体的质量分数等信息。指出图中对应衍射峰强度变化的原因:____________。
(4)为测定一定条件下该低品位软锰矿中锰元素的浸出率,进行如下实验:
准确称取软锰矿试样,加入一定量硫酸和单宁酸,水浴加热并充分搅拌,一段时间后过滤.将滤液冷却后加水定容至2L,量取20.00mL溶液于锥形瓶中,向锥形瓶中加入足量磷酸作稳定剂,再加入2mL高氯酸,边加边摇动,使
完全氧化为Mn(Ⅲ),加热溶液至无气体产生。冷却后用浓度为
的
溶液滴定至终点,消耗
溶液的体积为
。
①实验室现配溶液的浓度与计算值存在误差,为提高测量结果的精确度,滴定前需要对现配
溶液进行的补充实验是_________。
②完全氧化后加热溶液的目的是____________。
③计算该条件下软锰矿中锰元素的浸出率____________。[
。写出计算过程]
(5)90℃下,控制单宁酸用量和反应时间相同,测得对锰元素浸出率的影响如图所示。
时,锰元素浸出率降低的可能原因是___________。
10、BaCl2·xH2O是用途广泛的基础化工产品。我国目前主要是用盐酸和硫化钡(含少量Mg2+、Fe3+等)反应生产BaCl2·xH2O,工艺流程如下图所示。
已知:室温时Ksp[Mg(OH)2]=1.8×10-11 , Ksp[Fe(OH)3]=4.0×10-38 ,请回答下列问题:
(1)反应Ⅰ中生成的H2S用足量氨水吸收,一定条件下向所得溶液中通入空气,又可得到单质硫并使吸收液再生,再生反应的化学方程式为_____________________________________。
(2)所得氯化钡粗液中含硫化合物(H2S、HS-等)影响产品质量,可鼓入预热后的空气吹除,预热空气的目的是_______________;沉淀A的主要成分是_______________。
(3)热空气吹除时会有部分HS-转变为S2O O32-,使产品仍达不到纯度要求,可再进行酸化脱硫,酸化脱硫时的离子方程式为______________________________________________________。
(4)室温时,若加碱调溶液pH调至9,则完全沉淀的离子是__________,另一离子浓度为______mol/L (当溶液中离子浓度小于1×10-5 mol/L时认为该离子完全沉淀) 。若向0.1 mol/L FeCl3溶液中加入一定量等浓度的Na2CO3溶液,出现的现象________,发生反应的离子方程式___________________。
(5)将足量的SO2气体通入BaCl2溶液中有无明显现象_____________(填“有”或“无”),向NaOH溶液中通入足量的SO2气体,写出所得溶液离子浓度的大小顺序________________。
11、酸性条件下,与
按物质的量
恰好完全反应,生成的产物能使淀粉溶液变蓝,请完成下列离子方程式的填空与配平。
(________)H++(________)NO2-+(________)I-→(_________)+(__________)+(__________)H2O
根据上述离子方程式,1摩尔参与反应则转移的电子数目是______,反应中被还原的元素是______。
12、铁、镍、铜在医药、催化及材料等领域中都有广泛的应用。回答下列问题:
(1)在元素周期表中,某元素和铁、镍既处于同一周期又位于同一族,该元素的基态原子的价电子排布图为___________(填轨道表示式)。
(2)硝普钠(Na2[Fe(CN)5(NO)·2H2O])可用于治疗急性心率衰竭。在硝普钠中:
①第二周期元素第一电离能从大到小的顺序为___________。
②不存在的化学键有___________(填序号)。
a.离子键 b.金属键 c.配位键 d.极性共价键
(3)甘氨酸铜有顺式和反式两种同分异构体,结构如下图。
①甘氨酸铜中氮原子的杂化类型为___________。
②已知顺式甘氨酸铜能溶于水,反式甘氨酸铜难溶于水的原因可能是___________。
(4)Li、Fe、Se可形成新型超导材料,晶胞如图所示(Fe原子均位于面上)。晶胞棱边夹角均为90°,X的坐标为(0,1,),Y的坐标为(
,
,
),设NA为阿伏加德罗常数的值。坐标为(
,1,
)的是___________原子,Se原子X与Se原子Y之间的距离为___________nm,该晶体的密度为___________g·cm-3。
13、电镀污泥中主要含有、CuO、NiO、
、
和
等化合物。一种从电镀污泥中回收金属铜和硫酸镍的工艺流程如下。已知焙烧时
和
分别转化为
、
。回答下列问题:
(1)“焙烧”时先将固体粉碎,目的是_______。
(2)“焙烧”时转化为
,该反应的氧化剂和还原剂的物质的量之比为_______;“水浸”时
发生反应的离子方程式为_______。
(3)“滤液”的主要成分是含有少量重金属阳离子的硫酸溶液,除杂装置如图所示,液体X的溶质主要是_______(填化学式),液体Y是_______(填名称)。
离子交换柱原理为:HR+M+MR+H+;
2ROH+R2CrO4+2OH-
(4)“沉铁”时控制pH在1.5~2.5,pH不宜过高且应充分搅拌,原因是_______。
(5)电解时以惰性合金板为阳极,阳极的电极反应式为_______。
(6)常温下,“净化除杂”时,若溶液中铝离子浓度为,则其开始沉淀的pH应该调为_______。已知
邮箱: 联系方式: