1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、(1)甲苯与浓硫酸、浓硝酸在100℃时能获得不溶于水的淡黄色针状晶体,请写出反应方程式:__________。上述反应是加成反应还是取代反应?请判断并说明原因:__________________。
(2)Mg3N2是离子化合物,各原子均满足8电子稳定结构,写出Mg3N2的电子式:__________。
(3)在常压下,乙醇在水中的溶解度比溴乙烷在水中的溶解度大,主要原因是______。
3、“三酸两碱”是最重要的无机化工产品,广泛用于国防、石油、纺织、冶金、食品等工业。“三酸”是指硝酸、硫酸和盐酸,“两碱”指烧碱和纯碱。回答下列问题:
(1)写出过量稀硝酸分别与“两碱”溶液反应的离子方程式:_______、_______。
(2)请将“三酸两碱”中所含位于第三周期的元素,按原子半径由大到小的顺序排列_______。
(3)氯的非金属性比硫____(填“强”或“弱”),请用两个事实说明你的结论____________。
(4)某烧碱溶液中含0.1molNaOH,向该溶液通入一定量CO2,充分反应后,将所得溶液低温蒸干,得到固体的组成可能有四种情况,分别是:①________;②Na2CO3;③________;④NaHCO3。若该固体溶于水,滴加过量盐酸,再将溶液蒸干,得到固体的质量是_______ g。
(5)将Na2CO3溶于水得到下列数据:
水 | Na2CO3 | 混合前温度 | 混合后温度 |
35mL | 3.2g | 20℃ | 24.3℃ |
Na2CO3溶于水_________(填“吸”或“放”)热,请从溶解过程热效应的角度加以解释___________。
4、【化学—物质结构与性质】原子序数依次增大的A、B、C、D、E、F六种元素。其中A的基态原子有3个不同的能级,各能级中的电子数相等;C的基态原子2p能级上的未成对电子数与A原子的相同;D为它所在周期中原子半径最大的主族元素;E和C位于同一主族,F的原子序数为29。
(1)F原子基态的外围核外电子排布式为 。
(2)在A、B、C三种元素中,第一电离能由小到大的顺序是 (用元素符号回答)。
(3)元素B的简单气态氢化物的沸点 (高于,低于)元素A的简单气态氢化物的沸点,其主要原因是 。
(4)由A、B、C形成的离子CAB-与AC2互为等电子体,则CAB-的结构式为 。
(5)在元素A与E所形成的常见化合物中,A原子轨道的杂化类型为 。
(6)由B、C、D三种元素形成的化合物晶体的晶胞如图所示,则该化合物的化学式为 。
(7)FC在加热条件下容易转化为F2C,从原子结构的角度解释原因 。
5、为治理环境,减少雾霾,应采取措施减少二氧化硫、氮氧化物(NOx)等的排放量。
Ⅰ.处理NOx的一种方法是利用甲烷催化还原NOx。
①CH4(g)+4NO2(g)=4NO(g)+CO2(g)+2H2O(g) △H1=-574 kJ/mol
②CH4(g)+2NO2(g)=N2(g)+CO2(g)+2H2O(g) △H2=-586.7kJ/mol
(1)若用4.48LCH4还原NO生成N2,则放出的热量为______kJ。(气体体积已折算为标准状况下)
Ⅱ.(2)NOx可用强碱溶液吸收产生硝酸盐。在酸性条件下,FeSO4溶液能将NO3-还原为NO,NO能与多余的FeSO4溶液作用生成棕色物质,这是检验NO3-的特征反应。写出该过程中产生NO的离子方程式: 。
(3)用电化学处理含NO3-的废水,电解的原理如图1所示。则电解时阴极的电极反应式为 ;当电路中转移20 mol电子时,交换膜左侧溶液质量减少________g。
图1 图2 图3
Ⅲ.利用I2O5消除CO污染的反应为:5CO(g)+I2O5(s)5CO2(g)+I2(s)。不同温度下,向装有足量I2O5固体的2L恒容密闭容器中通入4 molCO,测得CO2的体积分数(φ)随时间(t)变化曲线如图2所示。
(4)T1时,该反应的化学平衡常数的数值为 。
(5)下列说法不正确的是_______(填字母)。
A.容器内气体密度不变,表明反应达到平衡状态
B.两种温度下,c点时体系中混合气体的压强相等
C.d点时,在原容器中充入一定量氦气,CO的转化率不变
D.b点和d点时化学平衡常数的大小关系:Kb<Kd
Ⅳ.以二氧化钛表面覆盖Cu2Al2O4为催化剂,可以将CO2和CH4通过反应CO2(g)+CH4(g)
CH3COOH(g) △H<0直接转化成乙酸。在不同温度下催化剂的催化效率与乙酸的生成速率如图3所示。
(6)①250~300℃时,乙酸的生成速率减小的主要原因是 。
②工业生产中该反应的温度常选择250℃、不选择400℃,从综合经济效益考虑,其原因是 。
6、葡萄糖醛酸分子()发生分子内脱水可得葡萄糖醛酸内酯。葡萄糖醛酸内酯是一种具有广阔前景和较高研究价值的肝脏解毒剂。如下是以马铃薯淀粉为原料,制备葡萄糖醛酸内酯的绿色环保工艺。
回答下列问题:
(1)葡萄糖醛酸分子中C、H、O第一电离能大小顺序为_______(用元素符号表示)。
(2)氧化、液化、糖化过程均需控制在98℃,最合理的加热方式是_______ (填 “水浴”或“油浴”)。
(3)活性炭吸附除杂为_______过程 (填“物理”或“化学”)。
(4)除杂后的葡萄糖醛酸溶液的浓缩过程、内酯化过程均在减压蒸馏下进行,减压蒸馏装置如图所示(加热、夹持装置已略去)。减压蒸馏需控制温度在50℃。
①该装置接真空系统的目的是_______。
②该装置中毛细管和螺旋夹的作用是_______。
(5)葡萄糖醛酸内酯含量测定的方法常用酸碱中和返滴定法。准确称取0.5000g试样,加入50mL蒸馏水充分溶解,再加入50mL0.1000 mol/L标准NaOH溶液(过量),充分反应,滴加2滴酚酞作指示剂并用0.1000 mol/L盐酸进行滴定,重复进行4次,得到如下实验数据:
组号 | 1 | 2 | 3 | 4 |
VHCl/mL | 25.47 | 26.29 | 25.49 | 25.54 |
已知葡萄糖醛酸内酯(C6H8O6, 相对分子质量为176)与NaOH按物质的量之比1:1进行反应。
①滴定达到终点的标志是_______。
②测定出葡萄糖醛酸内酯的质量分数为_______。
7、电催化还原是当今资源化利用二氧化碳的重点课题,常用的阴极材料有有机多孔电极材料、铜基复合电极材料等。
(1)一种有机多孔电极材料(铜粉沉积在一种有机物的骨架上)电催化还原的装置示意图如图-1所示。控制其他条件相同,将一定量的
通入该电催化装置中,阴极所得产物及其物质的量与电压的关系如图-2所示。
①电解前需向电解质溶液中持续通入过量的原因是___________。
②控制电压为0.8V,电解时转移电子的物质的量为___________mol。
③科研小组利用代替原有的
进行研究,其目的是___________。
(2)一种铜基复合电极材料的制备方法:将一定量
分散至水与乙醇的混合溶液中,向溶液中逐滴滴加
(一种强酸)溶液,搅拌一段时间后离心分离,得
,溶液呈蓝色。写出
还原
的离子方程式:___________。
(3)金属Cu/La复合电极材料电催化还原CO₂制备甲醛和乙醇的可能机理如图-3所示。研究表明,在不同电极材料上形成中间体的部分反应活化能如图-4所示。
①X为___________。在答题卡上相应位置补充完整虚线框内Y的结构。_________
②与单纯的Cu电极相比,利用Cu/La复合电极材料电催化还原的优点是___________。
8、研究含氮元素物质的反应对生产、生活、科研等方面具有重要的意义。
(1)发射“神舟十三”号的火箭推进剂为液态四氧化二氮和液态偏二甲肼(C2H8N2)。
已知:①C2H8N2(l)+4O2(g)=2CO2(g)+N2(g)+4H2O(l) ΔH1=-2765.0kJ/mol
②2O2(g) +N2(g)=N2O4(l) ΔH2=-19.5kJ/mol
③H2O(g)= H2O(l) ΔH3=-44.0kJ/mol
则C2H8N2(l)+2N2O4(1)=3N2(g)+2CO2(g)+4H2O(g)的ΔH为_______。
(2)碘蒸气存在能大幅度提高N2O的分解速率,反应历程为:
第一步:I2(g)→2I(g)(快反应)
第二步:I(g)+N2O(g)→N2(g)+IO(g)(慢反应)
第三步:IO(g)+N2O(g)→N2(g)+O2(g)+I2(g)(快反应)
实验表明,含碘时N2O分解速率方程v=k·c(N2O)·[c(I2)]0.5(k为速率常数)。下列表述正确的是_______。
A.N2O分解反应中,k值与碘蒸气浓度大小有关
B.v(第二步的逆反应)<v(第三步反应)
C.IO为反应的催化剂
D.第二步活化能比第三步大
(3)为避免汽车尾气中的氮氧化合物对大气的污染,需给汽车安装尾气净化装置。在净化装置中CO和NO发生反应2NO(g)+2CO(g)N2(g)+2CO2(g) ΔH=-746.8kJ-mol-1.实验测得:v正=k正·p2(NO)·p2(CO),v逆=k逆·p(N2)·p2(CO2)。其中k正、k逆分别为正、逆反应速率常数,只与温度有关;p为气体分压(分压=物质的量分数x总压)。
①达到平衡后,仅升高温度,k正增大的倍数_______(填“大于”“小于”或“等于”)k逆增大的倍数。
②一定温度下在刚性密闭容器中充入CO、NO和N2物质的量之比为2:2:1,压强为P0kPa。达平衡时压强为0.9P0kPa,则平衡时CO的转化率为_______,_______。
(4)我国科技人员计算了在一定温度范围内下列反应的平衡常数Kp:
①3N2H4(1)4NH3(g)+N2(g) ΔH1 Kp1
②4NH3(g)2N2(g)+6H2(g) ΔH2 Kp2
绘制pKp1-T和pKp2-T的线性关系图如图所示:(已知:pKp=-1gKp)
①由图可知,ΔH1_______0(填“>”或“<”)
②反应3N2H4(1)3N2(g)+6H2(g)的K=_______(用Kp1、Kp2表示);该反应的ΔH_______0(填“>”或“<”)。
9、Na2S又称臭碱、臭苏打,在生产、生活中有广泛应用。某化学兴趣小组在实验室制备、提纯硫化钠并探究其性质,测定硫化钠产品的纯度。
实验(一)制备并提纯硫化钠。
该化学兴趣小组在实验室模拟工业用煤粉还原法制备硫化钠,将芒硝(Na2SO4·10H2O)与过量的煤粉混合于800 ~ 1100°C高温下煅烧还原,生成物经冷却后用稀碱液热溶解、过滤,将滤液进行浓缩,再进行抽滤、洗涤、干燥,制得硫化钠产品。
(1)写出“高温还原”过程中的主要化学方程式:___________。
(2)抽滤又称减压过滤,相比普通过滤,抽滤的主要优点是___________。(答一条即可)
实验(二)探究硫化钠的性质。
(3)为了探究Na2S的还原性,该小组按如图装置进行实验。
接通K,发现电流表指针发生偏转,左侧烧杯中溶液颜色逐渐变浅。实验完毕后,该小组查阅资料后猜测,S2-被氧化为。设计实验验证:取出少量右侧烧杯中溶液于试管中,___________,则该猜测成立。写出正极的电极反应式___________。
实验(三)测定Na2S∙xH2O产品纯度。
称取wg产品溶于水,配制成250mL溶液,准确量取25. 00mL溶液于锥形瓶中,加入V1mLc1mol·L-1I2溶液(过量),过滤,滴几滴淀粉溶液,用c2 mol·L-1 Na2S2O3 标准溶液滴定至终点,消耗标准溶液V2mL。
(4)滴定终点的现象是________。选择_________(填“酸”或“碱”)式滴定管量取I2溶液。
(5)滴定反应:Na2S+I2 =2NaI+S,I2 +2Na2S2O3 = Na2S4O6+ 2NaI。该产品含Na2S∙xH2O的质量分数为___________(用含x、 c1、c2、V1、V2、w的代数式表示)。假设其他操作都正确,滴定终点时俯视读数,测定结果___________(填“偏高”“偏低”或“无影响”)。
10、我国产铜主要取自黄铜矿(CuFeS2),随着矿石品位的降低和环保要求的提高,湿法炼铜的优势日益突出。该工艺的核心是黄铜矿的浸出,目前主要有氧化浸出、配位浸出和生物浸出三种方法。
Ⅰ.氧化浸出
(1)在硫酸介质中用双氧水将黄铜矿氧化,测得有生成。
①该反应的离子方程式为____________________________________________。
②该反应在25~50℃下进行,实际生产中双氧水的消耗量要远远高于理论值,试分析其原因:_____________________________________________________。
Ⅱ.配位浸出
反应原理为:(未配平)
(2)为提高黄铜矿的浸出率,可采取的措施有____________________(至少写出两点)。
(3)为稳定浸出液的pH,生产中需要向氨水中添加NH4Cl,构成NH3·H2O-NH4Cl缓冲溶液。某小组在实验室对该缓冲体系进行了研究:25℃时,向a mol·L-1的氨水中缓慢加入等体积0.02mol·L-1的NH4Cl溶液,平衡时溶液呈中性。则NH3·H2O的电离常数Kb=________(用含a的代数式表示);滴加NH4Cl溶液的过程中水的电离平衡________(填“正向”“逆向”或“不”)移动。
Ⅲ.生物浸出
在反应釜中加入黄铜矿、硫酸铁、硫酸和微生物,并鼓入空气,黄铜矿逐渐溶解,反应釜中各物质的转化关系如图所示。
(4)在微生物的作用下,可以循环使用的物质有________(填化学式),微生物参与反应的离子方程式为______________________(任写一个)。
(5)假如黄铜矿中的铁元素最终全部转化为Fe3+,当有2mol 生成时,理论上消耗O2的物质的量为________。
11、镁铁水滑石(镁、铁的碱式碳酸盐)是具有层状结构的无机功能材料,可由Mg(NO3)2·6H2O、Fe(NO3)3·9H2O及CO(NH2)2等按一定比例在温度高于90℃时反应制得。
(1)其他条件不变时,n[CO(NH2)2]/n(Fe3+)对镁铁水滑石产率和溶液pH的变化关系如图所示:
①<3,反应液中产生少量气体,测氨仪未检出NH3,说明逸出的气体主要是____________(填化学式)。
②n[CO(NH2)2]/n(Fe3+)>12,溶液的pH处于稳定状态,这是因为_________________
(2)镁铁水滑石表示为:[FexMgy(OH)z](CO3)w·pH2O(摩尔质量为660g·mol-1),可通过下列实验和文献数据确定其化学式,步骤如下:
I.取镁铁水滑石3.300g加入足量稀硫酸充分反应,收集到气体112mL(标准状况)。
II.文献查得镁铁水滑石热分解TG-DSC图:303~473K,失去层间水(结晶水)失重为10.9%;473~773K时,CO32-和OH-分解为CO2和H2O;773K以上产物为MgO、Fe2O3。
Ⅲ.称取0.4000g热分解残渣(773K以上)置于碘量瓶中,加入稍过量盐酸使其完全溶解,加入适量水和稍过量的KI溶液,在暗处放置片刻,用0.1000mol·L-1Na2S2O3标准溶液滴定到溶液呈淡黄色,加入3mL淀粉溶液,继续滴定到溶液蓝色消失。(2Na2S2O3+I2=2NaI+Na2S4O6),消耗Na2S2O3溶液20.00mL。通过计算确定镁铁水滑石的化学式______________(写出计算过程)。
12、二氧化碳的资源化利用是化学研究的重要课题。我国科研人员利用直接电解装置将二氧化碳转化成液态甲酸,然后将甲酸通过合适的催化剂进行选择性制氢,获得清洁能源。
(1)甲酸选择性制氢反应为HCOOH(g)=CO2(g)+H2O(g) ∆H,相关物质的燃烧热及汽化热数据如下表所示:
物质 | HCOOH(l) | H2(g) | 物质 | HCOOH(l) |
燃烧热△H(kJ·mol-1) | —254.4 | —295.8 | 汽化热△H(kJ·mol-1) | +15.2 |
则△H=___________
(2)我国科学家在选择性制包反应催化机理研究中取得了新进展,首次将多相纳米钉催化剂用于纯甲酸选择性制氛反应。该反应的一种反应机理如图所示,路线①→②→③代表主反应的反应过程,路线①→②’→③’代表副反应的反应过程。
该过程中发生副反应的化学方程式为___________。经过研究分析改变的浓度对选择性制氢反应总反应速率影响最大,则选择性制氢反应的三步反应中,活化能最大的反应是___________(填“①”②"或“③)。
(3)下图表示中酸选择性制氢反应过程中,在2.5 MPa、5 MPa和10 MPa压强下甲酸的转化率随温度变化的平衡曲线。则副反应为___________(填“放热”或吸热”)反应。反应在D点对应的压强=___________,判断的依据是___________。
(4)在543K下,将1 molHCOOH蒸气充入刚性容器中,在催化剂作用下进行选择性制氢反应:HCOOH(g)=CO2(g)+H2(g),该过程中同时有副反应发生。达到平衡时,体系总压强为p kPa。测得实验数据如下:
T/K | HCOOH转化率/% | H2选择性/% |
543 | 75 | 60 |
已知: H2的选择性是指发生反应的HCOOH中转化为H2的HCOOH所占的百分比。则CO的分压P(CO)数值为___________,选择性制氢反应的平衡常数Kp=___________。(书写计算式)
13、近日,我国研究人员利用硫氰酸甲基铵{[CH3NH3]+[SCN]-}气相辅助生长技术,成功制得稳定的钙钛矿型甲脒铅碘(FAPbI3)。请回答下列问题:
(1)基态S原子的价电子排布图为_______。
(2)硫氰酸根离子(SCN-)的结构式为_______。
(3)甲脒(FA)的结构简式为
①其组成元素的电负性由小到大的排序为_______,其中碳原子的杂化方式为_______。
②甲脒比丙烷的熔点更高的原因是_______。
(4)水中铅测定方法是用双硫腙与铅反应生成红色双硫腙铅络合物(图1)
①该络合物可溶于四氯化碳,其晶体类型为_______。
②该络合物分子内不存在的微粒间作用力有_______。(选填序号)
a.σ键 b.π键 c.非极性键 d.配位健 e.离子键
(5)FAPbI3的晶体结构单元如图2所示,图中Y表示Pb,位于八面体中心,则甲脒的碘配位数为___。
邮箱: 联系方式: