1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、工业由钛铁矿(主要成分FeTiO3,Fe2O3、Al2O3、FeO、SiO2等杂质)制备TiCl4的工艺流程如下:
已知:
①酸浸 FeTiO3(s)+2H2SO4(aq)=FeSO4(aq)+TiOSO4(aq)+2H2O(l)
②水解 TiOSO4(aq)+2H2O(l)H2TiO3(s)+H2SO4(aq)
③煅烧 H2TiO3(s)TiO2(s)+H2O(s)
(1)FeTiO3中钛元素的化合价为 ,试剂A为 。
(2)碱浸过程发生反应的离子反应方程式为 。
(3)酸浸后需将溶液温度冷却至70℃左右,若温度过高会导致最终产品吸收率过低,原因是 。
(4)上述流程中氯化过程的化学反应方程式为 。
已知TiO2(s)+2Cl2(g)TiCl4(l)+O2(g) △H=+151kJ·mol-1。该反应极难进行,当向反应体系中加入碳后,则反应在高温条件下能顺利发生。从化学平衡的角度解释原因是 。
(5)TiCl4极易水解,利用此性质可制备纳米级TiO2·xH2O,该反应的化学反应方程式是 。
3、硫及其化合物广泛存在于自然界中。
(1)四硫富瓦烯分子结构如图所示,其碳原子杂化轨道类型为_________,根据电子云的重叠方式其含有的共价键类型为___________,1mol四硫富瓦烯中含有σ键数目为__________。
(2)煅烧硫铁矿时发生的反应为FeS2+O2Fe2O3+SO2,所得产物SO2再经催化氧化生成SO3,SO3被水吸收生成硫酸。
①基态S原子存在____________对自旋方向相反的电子。
②离子化合物FeS2中,Fe2+的电子排布式为__________,与S22-互为电子体的离子是____________。
③气体SO3分子的空间构型为__________,中心原子阶层电子对数为____________。
(3)闪锌矿是一种自然界含Zn元素的矿物,其晶体结构属于立方晶体(如下图所示),Zn属于_______区元素,在立方ZnS晶体结构中S2-的配位数为______________,若立方ZnS晶体的密度为ρg·cm-3,晶胞参数a=______nm(列出计算式),晶胞中A、B的坐标分别为A(,
,
)、B(
,
,
),则C点的坐标为____________。
4、分别称取2.39g(NH4)2SO4和NH4Cl固体混合物两份。
(1)将其中一份配成溶液,逐滴加入一定浓度的Ba(OH)2溶液,产生的沉淀质量与加入Ba(OH)2溶液体积的关系如图。混合物中n[(NH4)2SO4]:n(NH4Cl)为___________。
(2)另一份固体混合物中NH4+与Ba(OH)2溶液(浓度同上)恰好完全反应时,溶液中c(Cl-)=_____(溶液体积变化忽略不计)。
5、环烷酸金属(Cu、Ni、Co、Sn、Zn)盐常作为合成聚氨酯过程中的有效催化剂。回答下列问题:
(1)基态Cu原子的价电子排布___________。
(2)镍的氨合离子中存在的化学键有___________。
A.离子键 B.共价键 C.配位键 D.氢键 E.键 F.
键
(3)Ni、Co的第五电离能:,
,
,其原因是___________。
(4)锡元素可形成白锡、灰锡、脆锡三种单质。其中灰锡晶体与金刚石结构相似,但灰锡不如金刚石稳定,其原因是___________。
(5)硒化锌晶胞结构如图所示,其晶 胞参数为a pm。
①相邻的与
之间的距离为___________pm。
②已知原子坐标:A点为(0,0,0),B点为(1,1,1),则C点的原子坐标___________。
③若硒化锌晶体的密度为,则阿伏加德罗常数
___________(用含a、
的计算式表示)。
6、氢能是理想的清洁能源,资源丰富。以太阳能为热源分解 Fe3O4 ,经由热化学铁氧化合物循环分解水制H2 的过程如下:
(1)过程Ⅰ:
①将O2分离出去,目的是提高Fe3O4的 。
②平衡常数K 随温度变化的关系是 。
③在压强 p1下, Fe3O4的平衡转化率随温度变化的(Fe3O4) ~ T 曲线如图 1 所示。若将压强由p1增大到p2 ,在图1 中画出 p2 的
(Fe3O4) ~ T 曲线示意图。
(2)过程Ⅱ的化学方程式是 。
(3)其他条件不变时,过程Ⅱ在不同温度下, H2O的转化率随时间的变化(H2 O) ~ t曲线如图2 所示。比较温度T1 、T2 、T3的大小关系是 ,判断依据是 。
(4)科研人员研制出透氧膜(OTM) ,它允许电子、O2-同时透过,可实现水连续分解制H2。工作时,CO、H 2O分别在透氧膜的两侧反应。工作原理示意图如下:
H2O在 侧反应(填“ a ”或“ b ”),在该侧H2O释放出H2的反应式是 。
7、由P、S、Cl、Ni等元素组成的新型材料有着广泛的用途,回答下列问题。
(1)基态Cl原子核外电子占有的原子轨道数为______个,P、S、Cl的第一电离能由大到小顺序为_______。
(2)PCl3分子中的中心原子杂化轨道类型是______,该分子构型为_______。
(3)PH4Cl的电子式为______,Ni与CO能形成配合物Ni(CO)4,该分子中π键与σ键个数比为________。
⑷已知MgO与NiO的晶体结构(如图1)相同,其中Mg2+和Ni2+的离子半径分别为66 Pm和 69 pm,则熔点:MgO___NiO(填“>”、“<”或“=”),理由是______。
(5)若NiO晶胞中离子坐标参数A为(0,0,0),B为(1,1,0),则C离子坐标参数为______。
(6)一定温度下,NiO晶体可以自发地分散并形成“单分子层”,可以认为O2-作密置单层排列, Ni2+填充其中(如图2),已知O2-的半径为a m,每平方米面积上分散的该晶体的质量为____g。(用a、NA表示)
8、[化学—选修3:物质结构与性质] 化学作为一门基础自然科学,在材料科学、生命科学、能源科学等诸多领域发挥着重要作用。
(1)高温超导材料钇钡铜氧的化学式为YBaCu3O7,其中1/3的Cu以罕见的Cu3+形式存在。Cu在元素周期表中的位置为____ ,基态Cu3+的核外电子排布式为_ _______。
(2)磁性材料在生活和科学技术中应用广泛。研究表明,若构成化合物的阳离子有未成对电子时,则该化合物具有磁性。下列物质适合作录音磁带磁粉原料的为____(填选项字母)。
A.V2O5 | B.CrO2 | C.PbO | D.ZnO |
(3)屠呦呦因在抗疟药——青蒿素研究中的杰出贡献,成为首获科学类诺贝尔奖的中国人。青蒿素的结构简式如图l所示,其组成元素的电负性由大到小的顺序为 ;碳原子的杂化方式有____ 。
(4)“可燃冰”因储量大、污染小被视为未来石油的替代能源,由甲烷和水形成的“可燃冰”结构如图2所示。
①“可燃冰”中分子间存在的2种作用力为 。
②H2O的VSEPR模型为 ,比较键角的大小:H2O CH4(填“>”“<”或“=”),原因为 。
(5)锂离子电池在便携式电子设备以及电动汽车、卫星等领域显示出广阔的应用前景,该电池负极材料为石墨,石墨为层状结构(如图3),其晶胞结构如图4所示,该晶胞中有 个碳原子。已知石墨的层间距为apm,C-C键长为b pm,阿伏伽德罗常数的值为NA,则石墨晶体的密度为 g·cm-3(列出计算式)。
9、化学学习活动小组学习了铁铜化合物知识后,查阅资料,积极思考,提出了一系列问题,请予以解答:
(1)氯化亚铜(CuCl)是重要的化工原料,工业上常通过下列反应制备CuCl:
2CuSO4+Na2SO3+2NaCl+Na2CO3=2CuCl↓+3Na2SO4+CO2↑
查阅资料可得,CuCl可以溶解在FeCl3溶液中,请写出该反应的离子方程式是___________;
(2) 已知:Cu2O在酸溶液中发生歧化反应:Cu2O+2H+=Cu2++Cu +H2O
现将一定量混合物(Fe2O3、Cu2O、CuCl、Fe)溶解于过量稀盐酸中,反应完全后,得到W(包括溶液和少量剩余固体),此时溶液中一定含有的阳离子_________________(用离子符号表示);继续往W中通入足量的氯气,不断搅拌,充分反应,溶液中哪些离子的物质的量一定有明显变化________________(用离子符号表示);不通入气体,改往W中加入过量铁粉,过滤,调pH约为7,加入淀粉KI溶液和H2O2,溶液呈蓝色并有红褐色沉淀生成。当消耗2mol I-时,共转移3 mol电子,该反应的离子方程式是_____________________。
10、可用“沉淀法”除去粗盐中的、
、
杂质。某小组探究沉淀剂添加顺序及过滤方式对产品中硫酸根杂质含量的影响,实验流程及结果如下。
| 沉淀剂1 | 沉淀剂1 | 沉淀剂1 | 过滤方式 |
|
实验1 |
| NaOH溶液 |
| 逐一过滤 | 少量浑浊 |
实验2 |
|
| NaOH溶液 | 逐一过滤 | 少量浑浊 |
实验3 | NaOH溶液 |
|
| 逐一过滤 | 大量沉淀 |
实验4 |
| NaOH溶液 |
| 一起过滤 | 大量沉淀 |
(1)实验1中加入沉淀剂3后会生成_______(填化学式)。
(2)“除杂4”发生反应的离子方程式有_______。
(3)“操作X”为_______。
(4)查阅资料:难溶电解质的溶解度会受到溶液中其它离子的影响。加入与难溶电解质相同离子的电解质,因“同离子效应”溶解度降低;加入与难溶电解质不同离子的电解质,因“盐效应”溶解度增大。
①提出假设:
| 依据 | 假设 |
假设1 | 实验1和2中 | _______(填化学式)能增大 |
假设2 | 实验3中 | NaOH能明显增大 |
假设3 | _______(将内容补充完整) | NaOH或 |
②设计实验:探究不同试剂对硫酸钡溶解度的影响程度
| 探究1 | 探究2 | 探究3 | 探究4 |
实验流程 | ||||
试剂 | 饱和食盐水 | 2 | 0.5 | 蒸馏水 |
现象 | 少量浑浊 | 大量沉淀 | 大量沉淀 | 无明显现象 |
“滤液处理”需用到的试剂有_______。
③实验实验3中溶液的用量为理论值的1.5倍,最后仍检出
的原因是该体系中“同离子效应”_______“盐效应”(填“大于”或“小于”)。
④实验结论:粗盐提纯时,为了有效降低产品中含量,必须_______。
11、标准状况下,向多份等量的NaOH固体中,分别加入一定体积的1.00mol/L (NH4)2Fe(SO4)2溶液充分反应,反应产生的NH3随(NH4)2Fe(SO4)2溶液体积的变化如图所示(假设生成的NH3全部逸出):
请计算:
(1)a的值为__________L。
(2)每份NaOH固体的物质的量__________mol(写出计算过程)。
12、从废TiO2/WO3纳米薄膜中回收钛和钨等稀缺金属,既有利于资源综合利用,又避免污染环境。回收的工艺流程如下:
已知:
Ⅰ.乙胺(CH3CH2NH2)是无色极易挥发的液体,呈碱性,能与酸发生反应:CH3CH2NH2+H+=。
Ⅱ.酸性条件下,乙胺萃取 的反应为 2
+
(CH3CH2NH3)2WO4。
Ⅲ. TiOSO4易溶于水,属于强电解质。偏钛酸难溶于水,其化学式可表示为TiO(OH)2或H2TiO3,室温时Ksp[TiO(OH)2]=1.0 ×10-27。
回答下列问题:
(1)“碱浸”时发生反应的化学方程式为___________ 。“萃取”前。需要将“滤液I”的pH调整到3.5左右,目的是___________。
(2)试剂a为___________(写名称)。“反苯取”过程中发生反应的化学方程式为___________。
(3)实验室煅烧偏钛酸,应将偏钛酸放在___________(填仪器名称)中。
(4)检验“过滤Ⅱ”所得H2WO4·xH2O是否洗涤干净的方法是___________。
(5)室温下测得“滤液III”的pH=2,则此时“滤液III中c(TiO2+)=___________mol·L-1。
(6)如图所示。TiO2晶胞中Ti4+位于O2-所构成的正八体的面体心,ZrO2晶胞中Zr4+位于O2-所构成的立方体的体心。
①TiO2晶胞中O2-的配位数是___________。
②已知ZrO2晶胞的密度为ρg·cm-3,则晶体中Zr4+和O2-之间的最短距离为___________pm(列出算式。已知NA为阿伏加德罗常数的值,ZrO2的摩尔质量为Mg·mol-1)。
13、纳米零价铁可用于去除水体中的六价铬[Cr(VI)]与硝酸盐等污染物。
(1)用FeCl2溶液与NaBH4(H元素为-1价)溶液反应制备纳米零价铁的化学方程式:FeCl2+2NaBH4+6H2O=Fe+2B(OH)3+2NaCl+7H2↑,当生成1molFe时,转移电子的物质的量为_______。
(2)纳米零价铁可将水体中Cr(VI)还原为Cr3+,再将Cr2+转化为Cr(OH)3(两性氢氧化物)从水体中除去。
①室温下Cr(VI)总浓度为0.20mol·L-1;溶液中,含铬物种浓度随pH的分布如图1所示。H2CrO4的Ka2=_______。
②调节溶液pH,可使Cr3+转化为Cr(OH)3,沉淀而被除去。但pH>9时,铬的去除率却降低,其原因是_______。
(3)有人研究了用纳米零价铁去除水体中NO。
①控制其他条件不变,用纳米零价铁还原水体中的NO,测得溶液中NO
、NO
、NH
浓度随时间变化如图2所示。与初始溶液中氮浓度相比,反应过程中溶液中的总氮(NO
、NO
、NH
)浓度减少,其可能原因是_______。
②将一定量纳米零价铁和少量铜粉附着在生物炭上,可用于去除水体中NO,其部分反应原理如图3所示,与不添加铜粉相比,添加少量铜粉时去除NO
效率更高,其主要原因是_______;NO
转化为NH
的机理可描述为_______。
邮箱: 联系方式: