1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、[化学——选修3:物质结构与性质]太阳能电池板材料除单晶硅外,还有铜、铟、镓、硒等化学物质。
(1)基态硅原子的价电子排布图: 。
(2)硒和硫同为VIA族元素,与其相邻的元素有砷和溴,则三种元素的第二电离能由小到大的顺序为 。(用I2X表示)
(3)气态SeO3分子的杂化类型为 ,与SeO3互为等电子体的一种阴离子为 (填化学式)。
(4)胆矾CuSO4·5H2O可写成[Cu(H2O) 4]SO4 ·H2O,其结构示意图如下:
胆矾中含有的粒子间作用力是 (填序号)。
A.离子键 B.极性键 C.金属键 D.配位键 E.氢键 F.非极性键
(5)在硫酸铜溶液中加入过量KCN,生成配合物K 2[Cu(CN)4],该配合物属于 晶体,已知CN-与N2为等电子体,指出1molCN-中键的数目为 。
(6)一种铜金合金晶体具有面心立方最密堆积结构,在晶胞中金原子位于顶点,铜原子位于面心,则该合金中铜原子(Cu)与金原子(Au)个数比为 ;若该晶体的晶胞棱长为a nm,则该合金密度为 g/cm3。(列出计算式,不要求计算结果,阿伏加德罗常数的值为NA)
3、氢能是极具发展潜力的清洁能源,2021年我国制氢量位居世界第一、请回答:
(1)时,
燃烧生成
放热
,
蒸发吸热
表示
燃烧热的热化学方程式为_______。
(2)工业上,常用与
重整制备
。500℃时,主要发生下列反应:
I.
II.
①已知:。向重整反应体系中加入适量多孔
,其优点是_______。
②下列操作中,一定能提高平衡转化率的是_______(填标号)。
A.加催化剂 B.增加用量
C.移除 D.恒温恒压,通入惰性气体
③500℃、恒压条件下,1molCH4(g)和1molH2O(g)反应达平衡时,甲烷的转化率为0.5,二氧化碳的物质的量为0.25mol,则反应II的平衡常数Kp=_______(用平衡分压代替平衡浓度计算,分压-总压×物质的量分数)。
(3)实现碳达峰、碳中和是贯彻新发展理念的内在要求,因此二氧化碳的合理利用成为研究热点。可用氢气和二氧化碳在催化剂作用下合成甲醇:。恒压下,
和
的起始物质的量之比为1∶3时,该反应甲醇的平衡产率随温度的变化如图所示。该反应的
_______0,甲醇的产率P点高于T点的原因为_______。
(4)通过上述反应制得的甲醇燃料电池在新能源领域中应用广泛。
①若采用溶液为燃料电池的电解质溶液,则燃料电池的负极方程式为_______。
②已知在该燃料电池中,吸附在催化剂表面的甲醇分子逐步脱氢得到,四步可能脱氢产物及其相对能量如图,则最可行途径为a→_______(用b~j等代号表示)。
4、Ⅰ.在密闭容器中放入
,在一定温度进行如下反应:
容器内气体总压强(P)与起始压强的比值随反应时间(t)数据见下表:(提示,密闭容器中的压强比等于气体物质的量之比)
时间 | 0 | 1 | 2 | 4 | 8 |
| 16 | 20 | 25 |
1.00 | 1.50 | 1.80 | 2.20 | 2.30 |
| 2.38 | 2.40 | 2.40 |
回答下列问题
(1)下列能提高A的转化率的是_______
A.升高温度 B.体系中通入A气体
C.将D的浓度减小 D.通入稀有气体,使体系压强增大到原的5倍
(2)该反应的平衡常数的表达式K_______,前2小时C的反应速率是_________;
(3)平衡时A的转化率___________,C的体积分数__________(均保留两位有效数字)
(4)相同条件下,若该反应从逆向开始,建立与上述相同的化学平衡,则D的物质的量取值范围______
Ⅱ.已知乙酸是一种重要的化工原料,该反应所用的原理与工业合成乙酸的原理类似;常温下,将溶于水配成
溶液,向其中滴加等体积的
的盐酸使溶液呈中性(不考虑醋酸和盐酸的挥发),用含a和b的代数式表示醋酸的电离常数
___________
5、太阳能电池的发展已经进入了第三代。第三代就是铜铟镓硒CIGS等化合物薄膜太阳能电池以及薄膜硅系太阳能电池。完成下列填空:
(1)亚铜离子(Cu+)基态时的电子排布式为____________;
(2)硒为第四周期元素,相邻的元素有砷和溴,则这3种元素的第一电离能I1从大到小顺序为(用元素符号表示)_______________________________;用原子结构观点加以解释_________________________。
(3)与镓元素处于同一主族的硼元素具有缺电子性(价电子数少于价层轨道数),其化合物可与具 有孤对电子的分子或离子生成加合物,如BF3能与NH3反应生成BF3•NH3 。BF3•NH3中B原子的杂化轨道类型为__________,N原子的杂化轨道类型为 ______________ ,B与 N之间形成 __________________ 键。
(4)单晶硅的结构与金刚石结构相似,若将金刚石晶体中一半的C原子换成Si原子且同种原子不成键,则得如图所示的金刚砂(SiC)结构;金刚砂晶体属于____________(填晶体类型)在SiC结构中,每个C原子周围最近的C原子数目为 ______________。
6、二氧化碳的捕集、利用是我国能源领域的一个重要战略方向。
(1)科学家提出由CO2制取C的太阳能工艺如上图所示。
①若“重整系统”发生的反应中=6,则FexOy的化学式为________。
②“热分解系统”中每分解1molFexOy,转移电子的物质的量为________。
工业上用CO2和H2反应合成甲醚。已知:
CO2(g)+3H2(g)===CH3OH(g)+H2O(g) ΔH1=-53.7kJ·mol-1
CH3OCH3(g)+H2O(g)===2CH3OH(g) ΔH2=+23.4kJ·mol-1
则2CO2(g)+6H2(g)===CH3OCH3(g)+3H2O(g) ΔH3=________kJ·mol-1。
①一定条件下,上述合成甲醚的反应达到平衡状态后,若改变反应的某一个条件,下列变化能说明平衡一定向正反应方向移动的是________(填字母)。
a.逆反应速率先增大后减小 b.H2的转化率增大
c.反应物的体积百分含量减小 d.容器中的值变小
②在某压强下,合成甲醚的反应在不同温度、不同投料比时,CO2的转化率如下图所示。T1温度下,将6molCO2和12molH2充入2L的密闭容器中,5min后反应达到平衡状态,则0~5min内的平均反应速率v(CH3OCH3)=__________;KA、KB、KC三者之间的大小关系为____________。
(3)常温下,用氨水吸收CO2可得到NH4HCO3溶液,在NH4HCO3溶液中,c(NH)________(填“>”、“<”或“=”)c(HCO
);反应NH
+HCO
+H2O=NH3·H2O+H2CO3的平衡常数K=__________。(已知常温下NH3·H2O的电离平衡常数Kb=2×10-5,H2CO3的电离平衡常数K1=4×10-7,K2=4×10-11)
7、六方晶胞是一种常见晶胞,镁、锌和钛的常见晶胞属于六方晶胞。
(1)①写出Zn所在元素周期表中的分区是_______;
②Ti的基态原子价电子排布式_______;
③下表为Na、Mg、Al的第一电离能。
第一电离能 | 元素 | ||
Na | Mg | Al | |
496 | 738 | 577 |
请解释其变化规律的原因_______。
(2)已知以上三种金属的盐的熔沸点(℃)如下表:
物理性质 | 氯化物 | ||
熔点 | 712 | 290 | -24.1 |
沸点 | 1412 | 732 | 136.4 |
已知:熔融状态下能够导电。请解释三种氯化物熔沸点差异的原因_______。
的熔沸点明显偏低的另一个原因是该分子空间构型是_______,分子高度对称,没有极性,分子间作用力很弱。
(3)某晶体属于六方晶系,其晶胞参数,
。晶胞沿着不同方向投影如下,其中深色小球代表A原子,浅色大球代表B原子(化学环境完全等同)。已知A2原子坐标为
,B1原子沿c方向原子坐标参数
。
①该物质的化学式为_______。
②晶胞中原子A1—A2在ab面投影的距离为_______(保留四位有效数字)。
③B1原子坐标参数为_______。
8、石油产品中含有H2S及COS、CH3SH等多种有机硫,石油化工催生出多种脱硫技术。请回答下列问题:
(1)COS的电子式是_______________。
(2)已知热化学方程式:①2H2S(g)+SO2(g)=3S(s)+2H2O(l) △H=-362 kJ·mol-1
②2H2S(g)+3O2(g)=2SO2(g)+2H2O(l) △H2=-1172 kJ·mol-1
则H2S气体和氧气反应生成固态硫和液态水的热化学方程式为__________________。
(3)可以用K2CO3溶液吸收H2S,其原理为K2CO3+H2S=KHS+KHCO3,该反应的平衡常数为________。(已知H2CO3 的Ka1=4.2×10-7,Ka2=5.6×10-11;H2S的Ka1=5.6×10-8,Ka2=1.2×10-15)
(4)在强酸溶液中用H2O2 可将COS氧化为硫酸,这一原理可用于COS 的脱硫。该反应反应的化学方程式为_________________。
(5)COS的水解反应为COS(g)+H2O(g)CO2(g)+H2S(g) △H<0。某温度时,用活性α-Al2O3作催化剂,在恒容密闭容器中COS(g)的平衡转化率随不同投料比[n(H2O)/n(COS)]的转化关系如图1所示。其它条件相同时,改变反应温度,测得一定时间内COS的水解转化率如图2所示:
①该反应的最佳条件为:投料比[n(H2O)/n(COS)]____,温度_____________
②P点对应的平衡常数为_____________ 。(保留小数点后2 位)
③当温度升高到一定值后,发现一定时间内COS(g)的水解转化率降低;猜测可能的原因是__________________。
9、为有效控制雾霾,各地积极采取措施改善大气质量。有效控制空气中氮氧化物、碳氧化物和硫氧化物显得尤为重要。
(1)在汽车排气管内安装催化转化器,可将汽车尾气中主要污染物转化为无毒的大气循环物质。
已知:① ∆H=180.5kJ·
②C和CO的燃烧热(∆H)分别为-393.5kJ·和-283kJ·
则2NO(g)+2CO(g)=N2(g)+2CO2(g) ∆H=_________kJ·
(2)将0.20molNO和0.10molCO充入一个容积为1L的密闭容器中,反应过程中物质浓度变化如图所示。
①CO在0—9min内的平均反应速率=__________ mol·L-1·
(保留两位有效数字);第12min时改变的反应条件可能为_________。
A.升高温度 B.加入NO
C.加催化剂 D.降低温度
②该反应在第18min时又达到平衡状态,此时的体积分数为________(保留三位有效数字),化学平衡常数K=____________(保留两位有效数字)。
(3)通过人工光合作用能将水与燃煤产生的转化为HCOOH和
。已知常温下0.1mol·
的HCOONa溶液pH=10,则HCOOH的电离常数Ka=__________。
10、化工专家侯德榜发明的侯氏制碱法为我国纯碱工业和国民经济发展做出了重要贡献。某化学兴趣小组在实验室中模拟侯氏制碱法制备NaHCO3,进一步 得到产品Na2CO3和NH4Cl两种产品,并测定碳酸钠中碳酸氢钠的含量。过程如下:
Ⅰ.NaHCO3 的制备
实验流程及实验装置图如下:
回答下列问题:
(1)a导管末端多孔球泡的作用_______。
(2)b中通入的气体是_______, 写出实验室制取该气体的化学方程式_______。
(3)生成NaHCO3的总反应的化学方程式为_______。
Ⅱ.Na2CO3中NaHCO3含量测定
i.称取产品2.500g,用蒸馏水溶解,定容于250mL容量瓶中:
ii.移取25.00mL上述溶液于锥形瓶,加入2滴指示剂M,用0.1000mol·L-1盐酸标准溶液滴定至溶液由浅红色变无色(第一滴定终点), 消耗盐酸V1mL;
iii.在上述锥形瓶中再加入2滴指示剂N,继续用0.1000mol·L-1盐酸标准溶液滴定至终点(第二滴定终点),又消耗盐酸V2mL;
iv.平行测定三次,V1 平均值为22.25,V2平均值为23.51。
回答下列问题:
(4)指示剂N为_______, 第二滴定终点的现象是_______。
(5)Na2CO3中NaHCO3的质量分数为_______ ( 保留三位有效数字)。。
(6)第一滴定终点时,某同学仰视读数,其他操作均正确,则NaHCO3质量分数的计算结果_______(填“偏大”“偏小”或“无影响”)。
11、已知:5C2O42-+2MnO4-+16H+ = 2Mn2++10CO2↑+8H2O。某研究小组通过如下实验步骤测定晶体A(KxFey(C2O4)z·aH2O,其中的Fe元素为+3价)的化学式:
步骤1:准确称取A样品9.820 g,分为两等份;
步骤2:取其中一份,干燥脱水至恒重,残留物质量为4.370g;
步骤3:取另一份置于锥形瓶中,加入足量的3.000 mol·L-1 H2SO4溶液和适量蒸馏水,使用0.5000 mol·L-1 KMnO4溶液滴定,滴定终点消耗KMnO4溶液的体积为24.00 mL;
步骤4:将步骤1所得固体溶于水,加入铁粉0.2800 g,恰好完全反应。
通过计算确定晶体A的化学式(写出计算过程) _______________。
12、(1)Cd与Zn同族且相邻,若Cd基态原子将次外层1个d电子激发进入最外层的np能级,则该激发态原子的外围电子排布式为_______。
(2)一水合甘氨酸锌[(H2NCH2COO)2Zn·H2O]是一种饲料添加剂,该化合物中所涉及的 第二周期元素的第一电离能由大到小的顺序是 _______(用元素符号表示);
(3)噻吩()和吡咯(
)形成配位化合物。噻吩难溶于水,吡咯能溶于水,原因为:_______。
(4)含砷有机物“对氨基苯胂酸”的结构简式如图,As原子轨道杂化类型为_______,1mol对氨基苯胂酸含σ键数目为_______
(5)砷化镉可以看作是石墨烯的3D版,其晶胞结构如图,As为面心立方堆积,Cd占据As围成的四面体空隙,空隙占有率75%,故Cd为“具有两个真空的立方晶格”,如图“①”和“②”位是“真空”。建立如图的原子坐标系,①号位的坐标为(,
,
),则③号位原子坐标参数为_______。晶胞参数为apm,阿伏加德罗常数的值为NA,砷化镉的摩尔质量为Mg·mol-1,则该晶胞的密度为_______g·cm-3(列计算式即可)
13、2022年,我国锂离子电池产业在全球仍然居于领军者地位。锂离子电池主要基于其拥有较高的能量重量比等多项特性,常用的正极材料为钴酸锂、锰酸锂和磷酸亚铁锂等。
(1)基态Mn2+核外的未成对电子为_______个。
(2)聚合物锂离子电池工作时,Li+沿聚乙二醇分子中的碳氧链迁移,过程如图所示(阴离子未画出)。乙二醇易溶于水的原因有二:①乙二醇是极性分子,易溶于极性溶剂水;②_______,Li+迁移过程中与聚乙二醇分子中氧原子间的作用力为_______。
(3)锂离子电池常采用离子液体作电解质,以下为2种离子液体的结构。
化合物I中碳原子的杂化轨道类型为_______,化合物I、Ⅱ各1mol,共含有_______(用NA表示阿佛伽德罗常数的值)个σ键;化合物中阴离子的空间结构为_______。有机溶剂一般熔、沸点较低,而离子液体的较高,原因是_______。
(4)铁的一种配合物的化学式为[Fe(Htrz)3](ClO4)2,配体Htrz为三氮唑( )。
①ClO的键角_______(填“等于”“大于”或“小于”)ClO
的键角。
②Htrz分子为平面结构,在形成Htrz分子中的大π键时,连接氢原子的氮原子提供的电子数是_______。
(5)某离子型铁氧化物晶胞结构如图所示,它由X、Y组成,则氧化物中X、Y之比为_______。已知该晶体的晶胞参数为apm,阿佛伽德罗常数的值为NA,该晶体的密度为dg•cm-3,则NA=_______(用含a和d的代数式表示)。
邮箱: 联系方式: