1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、向等物质的量浓度的、
混合溶液中滴加稀盐酸。
①在滴加盐酸过程中,溶液中 与含硫各物质浓度的大小关系为______(选填字母)。
a.
b.
c.
d.
②溶液中所有阴离子浓度由大到小排列是____________;
溶液呈碱性,若向溶液中加入
溶液,恰好完全反应,所得溶液呈强酸性,其原因是____________(用离子方程式表示)。
3、Ⅰ.(1)右图为1molNO2(g)和1molCO(g)反应生成NO(g)和CO2(g)过程中的能量变化示意图。已知E1=134KJ/mol,E2=368KJ/mol( E1、 E2为反应的活化能)。若在反应体系中加入催化剂,反应速率增大,则E1、△H的变化分别是 、 (填“增大”、“减小”或“不变”)。写出该 反应的热化学方程式 。
(2)若反应SO2(g)+I2(g)+2H2O(g)=H2SO4(l)+2HI(g)在150℃下能自发进行,则△H___0。
A.大于 B.小于 C.等于 D.大于或小于都可
Ⅱ.以CO2为碳源制取低碳有机物成为国际研究焦点,下面为CO2加氢制取乙醇的反应:
2CO2(g)+6H2(g) CH3CH2OH(g)+3H2O(g) △H=QkJ/mol (Q>0)
在密闭容器中,按CO2与H2的物质的量之比为1:3进行投料,在5MPa下测得不同温度下平衡体系中各种物质的体积分数(y%)如下图所示。完成下列填空:
(1)表示CH3CH2OH体积分数曲线的是____(选填序号)。
(2)在一定温度下反应达到平衡的标志是 。
A.平衡常数K不再增大 B.CO2的转化率不再增大
C.混合气体的平均相对分子质量不再改变 D.反应物不再转化为生成物
(3)其他条件恒定,达到平衡后,能提高H2转化率的措施是_______(选填编号)。
A.升高温度 B.充入更多的H2 C.移去乙醇 D.增大容器体积
(4)图中曲线a和c的交点R对应物质的体积分数yR=_______。
4、开发利用核能可以减少对化石能源的依赖。UO2是一种常用的核燃料,其铀元素中需达到5%。该核燃料的一种制备流程如下:
(1)天然铀主要含99.3%和0.7%
,
和
互为_______。
(2)I中,将含有硫酸的UO2SO4溶液通入电解槽,如下图所示。
①A电极是_______(填“阴极”或“阳极”),其电极反应式是_______。
②U4+有较强的还原性。用质子交换膜隔开两极区溶液可以_______,从而提高U4+的产率。
(3)III中使用的F2可通过电解熔融KF、HF混合物制备,不能直接电解液态HF的理由是HF属于___化合物,液态HF几乎不电离。
(4)IV中利用了相对分子质量对气体物理性质的影响。铀的氟化物的熔沸点如下:
| UF4 | UF6 |
熔点/℃ | 1036 | 64(150kPa) |
沸点/℃ | 1417 | 56.5升华 |
①离心富集时,采用UF6的优点:
a.F只有一种核素,且能与U形成稳定的氟化物;
b._______。
②和
的相对分子质量之比约为_______(列出计算表达式)。
5、下表是部分短周期元素的信息,用化学用语回答下列问题。
(1)元素A在周期表中的位置 。B的某种核素中中子数比质子数多1,则表示该核素的原子符号为 。
(2)写出钙与M原子个数比为1:2化合物的电子式 钙与A原子个数比为1:2化合物含有的化学键类型(填离子键、共价键或非极性键) 。
(3)M2-、D+、G2-离子半径大小顺序是 > > (用离子符号回答)。
(4)由A、B、M及氢四种原子构成的分子A2H5BM2,既可以和盐酸反应又可以和氢氧化钠溶液反应,写出A2H5BC2的名称 。
(5)某同学设计实验证明A、B、F的非金属性强弱关系。
① 溶液a和b分别为 , 。
② 溶液c中的离子方程式为 。
(6)将0.5 mol D2M2投入100 mL 3 mol/L ECl3溶液中,转移电子的物质的量为 。
(7)工业上冶炼E,以石墨为电极,阳极产生的混合气体的成分为 。
6、【化学---选修3:物质结构与性质】原子序数小于36的X、Y、Z、W四种元素,其中X是半径最小的元素,Y原子基态时最外层电子数是其内层电子总数的2倍,Z原子基态时2p原子轨道上有3个未成对的电子,W原子4s原子轨道上有1个电子,M能层为全充满的饱和结构。回答下列问题:
(1)W基态原子的价电子排布式____________;Y2X2分子中Y原子轨道的杂化类型为______。
(2)化合物ZX3的沸点比化合物YX4的高,其主要原因是_____________。
(3)元素Y的一种氧化物与元素Z的一种氧化物互为等电子体,元素Z的这种氧化物的分子式是____________。Y60用做比金属及其合金更为有效的新型吸氢材料,其分子结构为球形32面体,它是由60个Y原子以20个六元环和12个五元环连接而成的具有30个Y=Y键的足球状空心对称分子。则该分子中σ键和π键的个数比_____;36gY60最多可以吸收标准状况下的氢气_____L。
(4)元素W的一种氯化物晶体的晶胞结构如右图所示,该氯化物的化学式是___________,该晶体中W的配位数为___________。它可与浓盐酸发生非氧化还原反应,生成配合物HnWCl3,反应的化学方程式为_________。
7、太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。其材料有单晶硅,还有铜、锗、镓、硒等化合物。
(1)基态亚铜离子中电子占据的原子轨道数目为____________。
(2)若基态硒原子价层电子排布式写成4s24px24py4,则其违背了____________。
(3)左下图表示碳、硅和磷元素的四级电离能变化趋势,其中表示磷的曲线是____________(填标号)。
(4)单晶硅可由二氧化硅制得,二氧化硅晶体结构如右上图所示,在二氧化硅晶体中,Si、O
原子所连接的最小环为____________元环,则每个O原子连接____________个最小环。
(5)与镓元素处于同一主族的硼元素具有缺电子性。自然界中含硼元素的钠盐是一种天然矿藏,其化学式写作Na2B4O7·10H2O,实际上它的结构单元是由两个H3BO3和两个[B(OH)4]-缩合而成的双六元环,应该写成Na2[B4O5(OH)4]8H2O.其结构如图所示,它的阴离子可形成链状结构。
①该晶体中不存在的作用力是____________(填选项字母)。
A.离子键B.共价键C.金属键D.范德华力E.氢键
②阴离子通过____________相互结合形成链状结构。
(6)氮化嫁(GaN)的晶体结构如图所示。晶体中N、Ga原子的轨道杂化类型是否相同____________(填“是”或“否”),判断该晶体结构中存在配位键的依据是____________。
(7)某光电材料由锗的氧化物与铜的氧化物按一定比例熔合而成,其中锗的氧化物晶胞结构如下图所示,该物质的化学式为____________。已知该晶体密度为7.4g/cm3,晶胞边长为4.3×10-10m。则锗的相对原子质量为____________(保留小数点后一位)。
8、氢能是发展中的新能源,它的利用包括氢的制备、储存和应用三个环节。回答下列问题:
(1)利用太阳能直接分解水制氢,是最具吸引力的制氢途径,其能量转化形式为___________________。
(2)氢气能源有很多优点,佴是氢气直接燃烧的能量转化率远低于燃料电池,写出碱性氢氧燃料电池的负极反应式:_______________________________________。
(3)在一定条件下,1mol某金属氢化物MHX与ymolH2发生储氢反应生成1 mol新的金属氢化物,写出该反应的化学反应方程式:___________________________________。
(4)化工生产的副产氢也是氢气的来源。电解法制取有广泛用途的Na2FeO4,同时获得氢气:Fe+2H2O+2OH−FeO42−+3H2↑,工作原理如图所示。装置通电后,铁电极附近生成紫红色的FeO42−,镍电极有气泡产生。已知:Na2FeO4只在强碱性条件下稳定,易被H2还原。
①电解一段时间后,c(OH−)降低的区域在_______(填“阴极室”或“阳极室”)。
②电解过程中,须将阴极产生的气体及时排出,其原因是_______。
9、门捷列夫在研究周期表时预言了包括“类铝”、“类硅”在内的11种元素。
(1)门捷列夫预言的“类硅”,多年后被德国化学家文克勒发现,命名为锗(Ge)。
①已知主族元素锗的最高化合价为+4价,其最高价氧化物的水化物为两性氢氧化物。试比较元素的非金属性Si___ Ge(用“>”或“<”表示)。
②若锗位于Si的下一周期,写出“锗”在周期表中的位置_____。根据锗在周期表中处于金属和非金属分界线附近,预测锗单质的一种用途是_______.
③硅和锗单质分别与反应时,反应较难进行的是_______(填“硅”或“锗”)。
(2)“类铝”在门捷列夫预言4年后,被布瓦博德朗在一种矿石中发现,命名为镓(Ga)。
①由镓的性质推知,镓与铝同主族,且位于铝的下一周期。试写出镓原子的结构示意图____。冶炼金属镓通常采用的方法是_____.
②已知Ga(OH)3难溶于水,为判断Ga(OH)3是否为两性氢氧化物,设计实验时,需要选用的试剂有GaCl3溶液、________和________.
(3)某同学阅读课外资料,看到了下列有关锗、锡、铅三种元素的性质描述:
①锗、锡在空气中不反应,铅在空气中表面形成一层氧化铅;
②锗与盐酸不反应,锡与盐酸反应,铅与盐酸反应但生成PbCl2微溶而使反应终止:
该同学查找三种元素在周期表的位置如图所示:
根据以上信息推测,下列描述正确的是______(填标号)。
a.锗、锡、铅的+4价的氢氧化物的碱性强弱顺序是:Ge(OH)4<Sn(OH)4<Pb(OH)4
b.锗、锡、铅的金属性依次减弱;
c. 锗、锡、铅的原子半径依次增大。
10、草酸是一种二元弱酸,可用作还原剂、沉淀剂等。某校课外小组的同学设计利用C2H2气体制取H2C2O4·2H2O。回答下列问题:
(1)甲组的同学以电石(主要成分CaC2,少量CaS及Ca3P2杂质等)为原料,并用下图1装置制取C2H2。
①装置A中用饱和食盐水代替水的目的是_____________。
②装置B中,NaClO将H2S、PH3 氧化为硫酸及磷酸,本身被还原为NaCl,其中PH3被氧化的离子方程式为______。该过程中,可能产生新的杂质气体Cl2,其原因是:______(用离子方程式回答)。
(2)乙组的同学根据文献资料,用Hg(NO3)2作催化剂,浓硝酸氧化C2H2制取H2C2O4·2H2O。制备装置如上图2所示:
①装置D中多孔球泡的作用是__________。
②装置D中生成H2C2O4的化学方程式为____________。
③从装置D中得到产品,还需经过___________(填操作名称)、过滤、洗涤及干燥。
(3)丙组设计了测定乙组产品中H2C2O4·2H2O的质量分数实验。他们的实验步骤如下:准确称取m g产品于锥形瓶中,加入适量的蒸馏水溶解,再加入少量稀硫酸,然后用c mol·L-1酸性KMnO4标准溶液进行滴定至终点,共消耗标准溶液V mL。
①滴定终点的现象是_____________。
②滴定过程中发现褪色速率开始很慢后逐渐加快,分析可能的原因是____________。
③产品中H2C2O4·2H2O的质量分数为_________(列出含 m、c、V 的表达式)。
11、水中的酸碱平衡。一个溶液(X)含有两种一元弱酸(只有一个具有酸性的质子); HA的酸解离常数KHA= 1.74 ×10-7, HB的酸解离常数KHB= 1.34 ×10-7溶液XpH为3.75。
(1).滴定完100 mL溶液X需要100 mL 0.220 M NaOH溶液。计算溶液X中每一种酸的最初的(总量)浓度(mol·L-1) ___________。在适当的地方合理近似[Kw= 1.00 × 10-14,298K。 ]
(2).计算最初包含6.00 × 10-2 M NaA与4.00 × 10-2 M NaB的溶液Y的pH___________。
(3).向溶液X中加入许多蒸馏水得到非常(无限)稀的溶液,酸的总浓度接近于零。计算稀溶液中每一种酸的解离百分数___________。
(4).将一个缓冲溶液加到溶液Y中,保持pH为10.0. 得到溶液Z,假定体积无变化。计算物质M(OH)2在Z中的溶解度___________ (用mol·L-1)。已知阴离子A-与B-可与M2+形成络合物:
M(OH)2 ⇌ M2+ + 2OH- Ksp=3. 10 ×10-12
M2++A- ⇌ [MA]+ K1=2.1 × 103
[MA]++ A- -⇌ [MA2] K2=5.0 × 102
M2++B- ⇌ [MB]+ K=6.2 × 103
[MB]++B- ⇌ [MB2] K=3.3 × 102
12、镁在工业、医疗等领域均有重要用途。某化学兴趣小组利用硼砂工厂的固体废弃物(主要含有MgCO3、MgSiO3、Al2O3和Fe2O3等),设计了如图回收镁的工艺流程:
(1)酸浸前,将固体废弃物研磨的目的是______。酸浸中硫酸略过量的作用为:①充分浸出金属离子;②______。
(2)酸浸时,生成滤渣1的离子方程式为______。
(3)第一次调节pH的目的是______。当加入氨水使Al3+开始沉淀时,溶液中c(Fe3+)/c(Al3+)为______。已知:Ksp[Fe(OH)3]=4.0×10-38,Ksp[Al(OH)3]=1.0×10-33,Ksp[Mg(OH)2]=1.8×10-11。
(4)设计简单方案分离滤渣2中的成分,简述实验过程:______。
(5)滤液3中可回收利用的物质主要是_____(写化学式),其阳离子的电子式为______。
(6)写出工业上从滤渣3中获得镁锭的最后一步反应的化学方程式:______。
13、氮氧化物的处理是环境科学研究的热点课题。
(1)已知:Ⅰ.C(s)+O2(g)=CO2(g)ΔH1=-393.5kJ·mol-1
Ⅱ.2C(s)+O2(g)=2CO(g)ΔH2=-221.0kJ·mol-1
Ⅲ.N2(g)+O2(g)=2NO(g)ΔH3=+180.5kJ·mol-1
利用高效催化剂处理汽车尾气中的NO和CO,发生反应:2NO(g)+2CO(g)=N2(g)+2CO2(g)。
①该反应正反应的活化能为EakJ·mol-1,则逆反应的活化能为______ kJ·mol-1。
②该反应在下能______自发进行(填“高温”或“低温”)。
③在2L恒容密闭容器中加入3molCO和2molNO,测得NO的转化率与温度(T)、时间(t)间的变化关系如图所示:则T2温度下,0~5min内用CO表示的平均反应速率v(CO)=______ ;T1温度下,上述反应的平衡常数K=______L·mol-1;若在T1温度下,向平衡后的容器中再加入4molN2和amolNO,使平衡向右移动,则a的取值范围是______。
(2)有人利用反应C(s)+2NO(g)=N2(g)+CO2(g)ΔH=-34.0kJ·mol-1,用活性炭对NO进行吸附。现向恒容密闭容器中加入足量的C和一定量的NO气体并在催化剂作用下发生反应。
①若为绝热容器,下列表示该反应达到平衡状态的是______(填字母)。
A.混合气体的密度保持不变
B.混合气体的压强保持不变
C.NO和N2的消耗速率之比为1:2
D.混合气体中c(NO)=c(N2)
②若为恒温容器,经相同时间测得不同温度下NO的转化率随温度的变化如图所示:由图可知最高转化率B点对应温度为440℃,则A、B、C三点中______点可能是对应温度下的平衡转化率;高于440℃时,NO的转化率降低的原因可能是平衡常数变小(即温度升高导致平衡逆向移动),也可能是______。
邮箱: 联系方式: