1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、(1)醋酸可通过分子间氢键双聚形成八元环,画出该结构_____。(以 O…H—O 表示氢键)
(2)已知碳化镁 Mg2C3可与水反应生成丙炔,画出 Mg2C3的电子式_____。
(3)工业上,异丙苯主要通过苯与丙烯在无水三氯化铝催化下反应获得,写出该反应方程式_____。
(4)将乙酸乙酯与H218O混合后,加入硫酸作催化剂,乙酸乙酯在加热条件下将发生水解反应,写出产物中不含18O的物质的结构简式_____。
3、铁及其氧化物是日常生活生产中应用广泛的材料,请回答下列问题:
(1)基态铁原子的价电子排布式为_________。
(2)Fe3+、Co3+与N3+、CN-等可形成络合离子。
①C、N、O中第一电离能最大的为________,其原因是_____________________。
②K3[Fe(CN)6]可用于检验Fe2+,1mol K3[Fe(CN)6]中含有σ键的数目为________________。
(3)铁的另一种配合物Fe(CO)x的中心原子价电子数与配体提供的电子数之和为18,则x=_____。已
知该配合物的熔点为-20.5 ℃,沸点为103℃,易溶于CCl4,据此可以判断Fe(CO)x晶体属于_____________(填晶体类型)。
(4)金属铁晶体中原子采用_________堆积,铁晶体的空间利用率为______(用含π的式子表示)。
(5)某种离子型铁的氧化物晶胞如图所示,它由A、B 方块组成。则该化合物中Fe2+、Fe3+、O2-的个数比为_______________(填最简整数比);已知该晶体的密度为d g·cm-3,阿伏加德罗常数的值为NA,则晶胞参数a为_______________nm(用含d和NA的代数式表示)。
4、X、Y、Z是三种原子序数依次递增的前10号元素,X的某种同位素不含中子,Y形成的单质在空气中体积分数最大,三种元素原子的最外层电子数之和为12,其对应的单质及化合物转化关系如图所示。下列说法正确的是______
A.原子半径:X<Z<Y,简单气态氢化物稳定性:Y<Z
B.A、C均为10电子分子,A的沸点高于C的沸点
C.E和F均属于离子化合物,二者组成中阴、阳离子数目之比均为1∶1
D.同温同压时,B与D体积比≤1∶1的尾气,可以用NaOH溶液完全处理
5、(1)路易斯酸碱电子理论认为,凡是能给出电子对的物质叫做碱;凡是能接受电子对的物质叫做酸。BF3和NH3分别属于是___、___(酸或者碱)。
(2)金属铯(Cs)位于元素周期表中第6周期第IA族,氯化钠与氯化铯晶体中离子的排列方式如图所示:
造成两种化合物晶体结构不同的原因是___。
6、(1)石墨转化为金刚石过程中需要克服的微粒间的作用力有___________。
(2)比较下列Ga的卤化物的熔点和沸点,GaCl3、GaBr3、GaI3的熔、沸点依次升高,分析其变化的原因是_____。
镓的卤化物 | GaCl3 | GaBr3 | GaI3 |
熔点/℃ | 77.75 | 122.3 | 211.5 |
沸点/℃ | 201.2 | 279 | 346 |
GaF3的熔点超过1000℃,写出其电子式___。
(3)GaAs是将(CH3)3Ga和AsH3用金属有机物化学气相淀积方法制备得到,该反应在700℃下进行,则该反应的化学方程式为:___。
7、I.把煤作为燃料可通过下列两种途径:
途径1:C(s) +O2 (g)=CO2(g) ΔH1<0 ①
途径2:先制成水煤气:C(s) +H2O(g) = CO(g)+H2(g) ΔH2>0 ②
再燃烧水煤气:2 CO(g)+O2 (g)=2CO2(g) ΔH3<0 ③
2H2(g)+O2 (g) =2H2O(g) ΔH4<0 ④
请回答下列问题:
(1) 途径I放出的热量________( 填“大于”“等于”或“小于”) 途径II放出的热量。
(2) ΔH1、ΔH2、ΔH3、ΔH4的数学关系式是_____________________。
II.某氮肥厂含氮废水中的氮元素多以和NH3·H2O形式存在,处理过程中
在微生物的作用下经过两步反应被氧化成
,这两步反应过程中的能量变化如图所示:
(3)1mol(aq)全部被氧化成
(aq)的热化学方程式是____________________
III.氮氧化物是造成光化学烟雾和臭氧层损耗的主要气体,已知:
①CO(g)+NO2(g)=NO(g)+CO2(g) ΔH= -a kJ•mol-1(a>0)
②2CO(g)+2NO (g)=N2(g)+2CO2(g) ΔH= -b kJ•mol-1(b>0)
(4)若用标准状况下 3.36L CO还原NO2至N2(CO完全反应)的整个过程中转移电子的物质的量为______mol,放出的热量为______kJ(用含有a和b的代数式表示)。
(5)用CH4催化还原NOx也可以消除氮氧化物的污染.例如:
①CH4(g)+4NO2(g)=4NO(g)+CO2(g)+2H2O(g) ΔH1= -574kJ•mol-1
②CH4(g)+4NO(g)=2N2(g)+CO2(g)+2H2O(g) ΔH2=?
若1mol CH4还原NO2至N2整个过程中放出的热量为867kJ,则ΔH2=______.
8、乙烯的产量是一个国家石油化工水平的重要标志,研究制备乙烯的原理具有重要的意义,科学家研究出各种制备乙烯的方法。
I.由乙烷直接脱氢或氧化脱氢制备,原理如下:
直接脱氢:
氧化脱氢:
(1)已知键能,
,生成1mol碳碳π键放出的能量为_______________kJ,从热力学角度比较直接脱氢和氧化脱氢,氧化脱氢法的优点为______________。
(2)一定温度下,在恒容密闭容器中充入一定量的和
,维持初始压强
,
,发生上述两个反应。2.5min时,
,
,则用
的分压变化表示直接脱氢反应的平均速率为_______
;反应一段时间后,
和
的消耗速率比小于2:1的原因为__________________。
II.利用乙炔和氢气催化加成制备乙烯,发生如下反应:
①
②
保持压强为20kPa条件下,按起始投料,匀速通入装有催化剂的反应器中发生反应①和②,测得不同温度下
和
的转化率如下图实线所示(图中虚线表示相同条件下平衡转化率随温度的变化)。
(3)表示转化率的曲线是_____________(填“m”或“n”)。
(4)随着温度的升高,m和n两条曲线都是先升高后降低,其原因是_______________。
(5)时,两种物质的转化率分别为0.75、0.5,反应①的平衡常数
__________
。
9、丙烯酸是非常重要的化工原料之一,可用甘油催化转化如下:
甘油丙烯醛
丙烯酸
,
已知:反应Ⅰ:
(活化能)
反应Ⅱ:
(活化能)
甘油常压沸点为290℃,工业生产选择反应温度为300℃,常压下进行。
(1)①反应Ⅰ在_______条件下能自发进行(填“高温”或“低温”);
②若想增大反应Ⅱ的平衡常数K,改变条件后该反应_______(选填编号)
A.一定向正反应方向移动 B.在平衡移动时正反应速率先增大后减小
C.一定向逆反应方向移动 D.在平衡移动时逆反应速率先减小后增大
(2)工业生产选择反应温度为300℃,忽略催化剂活性受温度影响,分析温度不能过低理由是_______。
(3)工业制备丙烯酸的中间产物丙烯醛有剧毒,选择催化剂_______能使工业生产更加安全。(选填编号)
催化剂A:能大幅降低和
催化剂B:能大幅降低,
几乎无影响
催化剂C:能大幅降低,
几乎无影响
催化剂D:能升高和
(4)①温度350℃,向1L恒容密闭反应器中加入1.00mol甘油和进行该实验。同时发生副反应:
。实验达到平衡时,甘油的转化率为80%。乙酸和丙烯酸的选择性随时间变化如图所示,计算反应
的平衡常数为_______(X的选择性:指转化的甘油中生成X的百分比)
②调节不同浓度氧气进行对照实验,发现浓度过高会降低丙烯酸的选择性,理由是_______。
(5)关于该实验的下列理解,正确的是_______。
A.增大体系压强,有利于提高甘油的平衡转化率
B.反应的相同时间,选择不同的催化剂,丙烯酸在产物中的体积分数不变
C.适量的氧气能抑制催化剂表面积碳,提高生产效率
D.升高反应温度,可能发生副反应生成COx,从而降低丙烯酸的产率
10、硫氰化钾可用于农药、医药、电镀、化学试剂、检定铁离子、铜和银等。某兴趣小组同学在实验室模拟工业制备硫氰化钾(KSCN),实验装置如图所示。
实验步骤如下:
(1)制备NH4SCN溶液:CS2+2NH3NH4SCN+H2S,该反应进行的比较缓慢,NH3不溶于CS2。
①实验前,应进行的操作是__;三颈烧瓶内盛放有一定量的CS2、水和催化剂。三颈烧瓶的下层CS2液体必须浸没导气管口,目的是__。
②实验开始时打开K1,加热装置A、D,缓慢地向装置D中充入气体。装置A中发生反应的化学方程式是__,装置C的作用可能是__。
(2)制备KSCN溶液:移去装置A处的酒精灯,关闭K1,打开K2,利用耐碱分液漏斗边加液边加热,则此时装置D中发生反应的化学方程式是__。
(3)制备KSCN晶体:先滤去三颈烧瓶中的固体催化剂,再减压蒸发浓缩,冷却结晶,___,得到硫氰化钾晶体。
(4)测定KSCN的含量:称取10.00g样品配成1000mL溶液,量取25.00mL溶液于锥形瓶中,并加入几滴Fe(NO3)3溶液,用0.1000mol·L-1AgNO3标准溶液滴定。经过3次平行试验,达到滴定终点时,消耗AgNO3标准溶液的体积平均为20.00mL。滴定反应的离子方程式为SCN-+Ag+=AgSCN↓。
①判断达到滴定终点的方法是__。
②样品中KSCN的质量分数为__(KSCN的摩尔质量为97g·mol-1,保留4位有效数字)。
11、取30.8g甲酸铜[(HCOO)2Cu]在隔绝空气的条件下加热分解,会生成含两种红色固体(Cu和)的混合物A和混合气体B;若相同质量的甲酸铜在空气中充分加热,则生成黑色固体D和
、
,固体A和D质量相差2.4g。请计算:
(1)红色固体A中Cu单质的物质的量为_______mol,同时写出简要的计算过程。
(2)将混合气体B置于中充分燃烧,消耗
的体积是_______L(换算为标准状况)。
12、陶瓷工业中钴系色釉具有呈色稳定、呈色强度高等优点,利用含钴废料(主要成分为Co3O4,还含有少量的铝箔、LiCoO2等杂质)制备碳酸钴的工艺流程如下:
(1)“滤液①”主要成分是:___________ ;“操作①”、“操作②”的分离方法是否相同___________ (填“是”或“否”)。
(2)“酸溶”中 H2O2的作用是:___________ (选填“氧化剂”或“还原剂”或“既是氧化剂又是还原剂”);若用 Na2S2O3代替 H2O2则有两种硫酸盐生成,写出 Na2S2O3在“酸溶”时发生的化学方程式:___________ 。
(3)已知钴、锂在有机磷萃取剂中的萃取率与 pH 的关系如下图所示,则有机磷萃取时最佳 pH 为 ___________。
(4)Co2+萃取的反应原理如下:Co2+ + 2HR(有机层)CoR2 + 2H+ ,则从有机相中分离出 CoSO4需向有机溶剂中加入以下哪种试剂 ___________(填选项)。
A.H2SO4 B.NaOH C.Co(OH)2 D.HR
(5)“沉钴”时 Na2CO3 的滴速过快或浓度太大,都会导致产品不纯,请分析原因:___________ 。
(6)在空气中煅烧 CoCO3生成钴的氧化物和 CO2,测得充分煅烧后固体质量为 24.1g,CO2的体积为 6.72L(标准状况),则该钴氧化物的化学式为___________ 。
13、催化重整
技术可得到富含CO的化工原料。回答下列问题:
(1)催化重整
的催化转化如图所示:
①已知相关反应的能量变化如图所示:
过程Ⅰ的热化学方程式为_______。
②关于上述过程Ⅰ、Ⅱ的说法不正确的是_______(填序号)。
a.过程Ⅱ实现了含碳物质与含氢物质的分离
b.整个催化重整过程,消耗理论上生成2molCO
c.过程Ⅰ中,Ni降低了反应的活化能
d.、CaO为中间产物
③在体积为3L的密闭容器中,加入甲烷和水蒸气各4mol,在一定条件下反应生成、CO,测得平衡时
的体积分数与温度、压强的关系如图所示。温度为
℃、压强为
时,N点表示的体系状态
_______
(填“>”、“=”或“<”);M点表示的体系状态
的平衡转化率为_______%(结果保留一位小数)。
(2)在一刚性密闭容器中,和
的分压分别为20kPa、30kPa,加入
催化剂并加热至1123K使其发生反应
。
①研究表明CO的生成速率,某时刻测得
,则
_______kPa,
_______
。
②达到平衡后测得体系压强是起始时的1.6倍,则该反应的平衡常数为:_______
(用各物质的分压代替物质的量浓度计算)。
(3)一定条件下催化剂可使
“甲烷化”从而变废为宝,其反应机理如图所示,该反应的化学方程式为_______,反应过程中碳元素的化合价为-3价的中间体是_______。
邮箱: 联系方式: