1、已知,
,
,则( )
A.
B.
C.
D.
2、在劳动技术课上,某同学欲将一个底面半径为4,高为6的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内,若不考虑损耗,则得到的圆柱体的最大体积是( )
A.
B.
C.
D.
3、已知向量,
满足
,
,则
( ).
A.
B.
C.
D.
4、已知,则( )
A.a>b>1
B.b>a>1
C.b>1>a
D.a>1>b
5、函数的定义域是( )
A.
B.
C.
D.
6、已知复数满足
(
为虚数单位),则
( )
A.5
B.
C.3
D.
7、已知,则
( )
A.
B.
C.
D.
8、已知,
是与向量
方向相同的单位向量,向量
在向量
上的投影向量为
,则
与
的夹角为( )
A.
B.
C.
D.
9、若不等式对任意的x∈(-∞,0]恒成立,则a的取值范围是( )
A.(-∞,2]
B.(-∞,1]
C.[1,+∞)
D.[2,+∞)
10、下列说法正确的是( )
A.“”是“
”的充分条件
B.“”是“
”的必要条件
C.“的一个对称中心是原点”是“
”的充分不必要条件
D.“”的充分不必要条件是“
与
的夹角为钝角”
11、已知向量的夹角为
,且
,则
与
的夹角为( )
A.
B.
C.
D.
12、下列函数中,与的奇偶性相同,且在
上单调性也相同的是( )
A.
B.
C.
D.
13、函数的值域为_____.
14、已知函数,若
的值域是
,则实数
的取值范围是________.
15、若不等式: 的解集为空集,则实数
的取值范围是______________
16、在中,a,b分别为内角A,B所对的边,b=5,B=30°,若
有两解,则a的取值范围为___________.
17、已知函数为定义在
上的奇函数,当
时,
,则
=_____.
18、设集合,
,
,则集合
的子集个数为___________.
19、有关数据显示,中国快递行业产生的包装垃圾在2020年为3000万吨,2021年增长率约为50%.有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从_________年开始,快递业产生的包装垃圾超过30000万吨.(参考数据:)
20、若,
,则
________.
21、下列各组中两函数相等的有____.
①
②
③
④
22、用符号“”或“
”填空:
______
,
_______
.
23、设全集且
,
且
,求实数
的值.
24、已知数列中,
,
.
(1)求数列的通项公式;
(2)设数列的前
项和为
,求证:
恒成立.
25、据专家研究高一学生上课注意力集中情况,发现其注意力指数与听课时间
之间的关系满足如图所示的曲线.当
时,曲线是二次函数图象的一部分,当
时,曲线是函数
图象的一部分.专家认为,当注意力指数
大于或等于80时定义为听课效果最佳.
(1)试求的函数关系式;
(2)若不是听课效果最佳,建议老师多提问,增加学生活动环节,问在那一个时间段建议老师多提问,增加学生活动环节?请说明理由.
邮箱: 联系方式: