1、已知向量,
,若向量
,
的夹角是锐角,则
的取值范围是( )
A.
B.
C.
D.
2、已知平面平面
,直线
平面
,直线
平面
,
,在下列说法中,
①若,则
;②若
,则
;③若
,则
.
正确结论的序号为( )
A.①②③
B.①②
C.①③
D.②③
3、在四边形中,
,
,
,
,
,
,
分别为
,
的中点,则
( )
A.
B.
C.
D.
4、已知集合,
,则
( )
A. B.
C.
D.
5、已知集合,
,则
( )
A.
B.
C.
D.
6、已知集合,则
( )
A.
B.
C.
D.
7、设全集,集合
,则
( )
A.
B.
C.
D.
8、已知、
满足
,点C在
内,且
,设
.若
,则
( )
A.
B.4
C.
D.
9、集合,
,则
等于( )
A.(0,+∞) B.(1,+∞) C.[1,+ ∞) D.[2,+ ∞)
10、设集合,集合
且
,则
( )
A. B.
C.
D.
11、已知是R上的偶函数,且当
,则
时,
( )
A. B.
C.
D.
12、矩形纸片中,
,
.将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽
2等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽
3等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;…;依次将宽
等分,每个小矩形按图(1)分割并把
个小扇形焊接成一个大扇形.当
时,最后拼成的大扇形的圆心角的大小为( )
A.小于
B.等于
C.大于
D.大于1.6
13、已知集合,
,则
______;
14、函数的最小值为________.
15、如图,在棱长均相等的正四棱锥P-ABCD中,O为底面正方形的重心,M,N分别为侧棱PA,PB的中点,有下列结论:
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直线PD与直线MN所成角的大小为90°.
其中正确结论的序号是______.(写出所有正确结论的序号)
16、已知是
内部一点,且
,则
的面积与
的面积之比为___________.
17、计算lgln
的结果是_____.
18、已知正方体的棱长为1,则正方体的外接球的体积为_________.
19、函数的单调递增区间为_____________.
20、比较大小:______
.
21、如图是用斜二测画法画出的直观图,则
的面积是________.
22、若角的终边经过点
,则
的值为____
23、在中,内角
,
,
所对的边分别为
,
,
,已知
,
.
(1)当时,求
的面积;
(2)求周长的最大值.
24、瓯江是温州、丽水人民的母亲河,为了体现“绿水青山”理念特举办游渡瓯江活动,现调查发现:比赛区域的瓯江江流平均宽度2.1km(即起点A处到对岸B的垂直距离),一名游泳爱好者室内游泳平均速度为60m/min.在热身环节时,游泳爱好者一直沿AB方向游去,在下游C处上岸,距离B处1.75km.
(1)假设水流匀速,求水流速度多少?
(2)比赛规定,运动员上岸点距离B处不超过时成绩有效.活动时,该游泳爱好者保持
方向不变游泳前进(记运动员游泳前进方向与AB的夹角记为
),为比赛成绩最好,求
的值.
25、已知函数.
(1)当时,求函数
在
的值域;
(2)若关于的方程
有解,求
的取值范围.
邮箱: 联系方式: