1、在同一平面内有三条直线,如果要使其中两条且只有两条直线平行,那么它们( )
A. 没有交点 B. 只有一个交点
C. 有两个交点 D. 有三个交点
2、一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )
A.
B.
C.
D.
3、如图,∠1的内错角是( )
A.∠2
B.∠3
C.∠4
D.∠5
4、如果xm-3·xn=x2,则n等于( )
A. m-1 B. 5-m C. 4-m D. m+5
5、若实数在数轴上的位置如图所示,则下列不等式成立的是( )
A. B.
C.
D.
6、今年2月份,某市经济开发区完成出口316000000美元,将这个数据316000000用科学记数法表示应为( ).
A.316×106
B.31.6×107
C.3.16×108
D.0.316×109
7、下列计算①(x3)3=x6 ②a6·a4=a24 ③(ab4)4=ab8 ④2x2+5x2=7x2错误的是( )
A. ① ④ B. ②③ C. ①② D. ①②③
8、若a>b,则下列不等式正确的是( )
A.a﹣2<b﹣2 B.>
C.am<bm D.am2>bm2
9、如图所示,AC⊥BC,AB=5cm,BC=4cm,AC=3cm,点P是线段AC上的一个动点,则线段BP长度的最小值为( )
A.2cm B.3cm C.4cm D.5cm
10、已知+(b﹣3)2=0,则(a+b)2019等于( )
A.1 B.﹣1 C.﹣2019 D.2019
11、现实生活中,总有人乱穿马路(如图中AD),却不愿从天桥(如图中)通过,请用数学知识解释这一现象,其原因是( )
A.两点之间线段的长度,叫做这两点之间的距离
B.过一点有无数条直线
C.两点确定一条直线
D.两点之间,线段最短
12、下列各图中,和
是对顶角的是( )
A.
B.
C.
D.
13、若点M(a-2,a+3)在y轴上,则点N(a+2,a-3)在第________象限.
14、若则x的值可以是________(写出一个即可).
15、如图所示,如果点A的位置为(1,2),那么点B的位置为_______ 。点C 的位置为_______ 。
16、请认真观察如下图形:
当时,长方形
分为2个直角三角形;
当时,长方形
分为8个直角三角形;
当时,长方形
分为18个直角三角形;
……
依此规律,第个图形中,长方形
被分成______个小直角三角形.
17、为了了解集贸市场出售的蔬菜中农药残留情况,宜采用________调查方式.
18、若的周长为12,AB=3,BC=4,则
的面积为____________________.
19、若是关于a,b的二元一次方程
的一个解,则代数式
的值是_________.
20、一次数学测试,满分为100分,测试分数出来后,同桌的张欢和李迎同学把他们的分数进行了计算,张欢说:我俩分数的和是160分;李迎说:我俩的分数差是60分。那么对于下面两个判断:①俩人的说法都是正确的;②至少一人说错了。 你认为正确的是______________.(填写序号)
21、在平面直角坐标系中,为坐标原点,将三角形
进行平移,平移后点
的对应点分别是点
,点
,点
,点
,点
.
(1)若,求
的值;
(2)若点,其中
. 直线
交
轴于点
,且三角形
的面积为1,试探究
和
的数量关系,并说明理由.
22、已知:如图,在三角形 ABC 中,点 E、G 分别在 AB 和 AC 上.EF⊥BC 于点 F,AD⊥BC 于点 D,连接 DG. 如果∠1 = ∠2,请猜想 AB 与 DG 的位置关系,并证明你的猜想.
23、如图,已知和
的边
和
在同一直线上,
,点
在直线
的两侧,
,判断
与
的数量关系和位置关系,并说明理由.
24、如图,在△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,将△CDB绕点C顺时针旋转到△CEF的位置,点F在AC上.
(1)△CDB旋转的度数;(2)连结DE,判断DE与BC的位置关系,并说明理由.
25、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.
(1)直接写出点C,D的坐标,求出四边形ABDC的面积;
(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.
26、解方程组.
(1)
(2)
邮箱: 联系方式: