1、如图,把绕点A逆时针旋转40°,得到
,点
恰好落在边AB上,连接
,则
的度数为( )
A.15° B.20° C.25° D.30°
2、在▱ABCD中,已知∠A=60°,则∠C的度数是( )
A.30°
B.60°
C.120°
D.60°或120°
3、如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大
B.线段EF的长逐渐减少
C.线段EF的长不变
D.线段EF的长不能确定
4、如图,在中,点
,
分别在边
,
上,有下列条件:
①;②
;③
;④
.其中,能使四边形
是平行四边形的条件有( ).
A.1个
B.2个
C.3个
D.4个
5、如图,以长为6的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,则MD的长为( )
A.93 B.62
C.3
3 D.
6、如图,在平面直角坐标系中,点
.点
第1次向上跳动1个单位至点
,紧接着第2次向左跳动2个单位至点
,第3次向上跳动1个单位至点
,第4次向右跳动3个单位至点
,第5次又向上跳动1个单位至点
,第6次向左跳动4个单位至点
,……,照此规律,点
第2020次跳动至点
的坐标是( )
A.
B.
C.
D.
7、若m是一元二次方程的根,则代数式
的值为( )
A.1
B.-1
C.2
D.-22
8、的倒数是( )
A. B.
C.
D.
9、如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C',设点A的坐标为(﹣2,3),则点A'的坐标为( )
A.(2,﹣3)
B.(﹣1,2)
C.(2,﹣2)
D.(2,﹣1)
10、下列方程中,是一元二次方程的是( )
A.x-2x+y=0 B.x(x+2)=0 C.x
-
+3=0 D.(x+5)x=x
11、如图,为钝角
中
边的中点,经过
的直线
将
分成了周长相等的两部分.已知
,则
_______.
12、已知反比例函数的图像过点A(m,y1 )、B(m-2,y2),若m>3,则y1____ y2.
13、函数的图像与
如图所示,则k=__________.
14、如图,在平面直角坐标系中,矩形的顶点
的坐标为
、
的坐标为
,点
是
的中点,点
在
边上运动,当
是以腰长为5的等腰三角形时,点
的坐标为________________.
15、已知x=1是方程x2+mx-n=0的一个根,则m2-2mn+n2=__________.
16、如果关于x的方程无解,则
的值是____.
17、多项式4(x﹣y)3﹣6(y﹣x)2的公因式是___.
18、平行四边形ABCD中,∠A-∠B=20°,则∠A=______,∠B=_______.
19、今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.下列说法正确的是___________:①骑自行车的人比步行的人晚30分钟出发;②骑自行车的人速度0.3千米/分;③l2的函数解析式是;④骑自行车的人出发15分钟后追上步行的人.
20、在中,
的取值范围是_______.
21、在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:
一次函数与方程(组)的关系:
(1)一次函数的解析式就是一个二元一次方程;
(2)点B的横坐标是方程kx+b=0的解;
(3)点C的坐标(x,y)中x,y的值是方程组①的解.
一次函数与不等式的关系:
(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;
(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.
(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:① ;② ;
(二)如果点B坐标为(2,0),C坐标为(1,3);
①直接写出kx+b≥k1x+b1的解集;
②求直线BC的函数解析式.
22、如图,在平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止运动,同时点Q也停止运动.设运动时间为ts,当t为何值时,以P,D,Q,B为顶点的四边形是平行四边形?
23、直线与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.
①请直接写出点C、点D的坐标,并求出m的值;
②点P(0,t)是线段OB上的一个动点(点P不与O、B重合),经过点P且平行于x轴的直线交AB于M、交CE于N.设线段MN的长度为d,求d与t之间的函数关系式(不要求写自变量的取值范围);
③点P(0,t)是y轴正半轴上的一个动点,为何值时点P、C、D恰好能组成一个等腰三角形?
24、甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数(个)与甲加工时间
之间的函数图象为折线
.如图所示.
(1)这批零件一共有______个,甲机器每小时加工______个零件;
(2)在整个加工过程中,求与
之间的函数解析式;
(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.
25、露露家里新购进了一台电热水器,她对电热水器的工作原理充满好奇.查阅说明书得知,电热水器上面显示的温度为内部水箱中水的温度,每次加热前可以预设温度值,当电热水器达到预设温度后,电热水器将停止加热,开启保温功能.而在使用过程中,电热水器会自动加水,水温会下降.
露露发现电热水器中水箱的温度y(单位:℃)与接通电源后的时间x(单位:min)之间存在函数关系,她打开电热水器的开关,预设温度为70℃,并记录水温变化的情况见下表,其中在接通电源后的第8min时,电热水器达到预设温度;第18min时,妈妈开始使用电热水器.
时间x(单位:min) | 0 | 2 | 4 | 6 | 8 | 18 | 20 | 21 | 25 | 28 |
温度y(单位:℃) | 30 | 40 | 50 | 60 | 70 | 70 | 63 | m | 50.4 | 45 |
(1)m的值为_________;
(2)请在下面的坐标系中描出上表中所有数据对应的点,并根据描出的点,画出当时,温度y随时间x变化的函数图象;
(3)在露露的妈妈使用电热水器前,电热水器处于保温功能的时长为__________min;
(4)未加热前,电热水器的水箱中水的温度为_________℃.
邮箱: 联系方式: