1、图中的三视图所对应的几何体是( )
A. B.
C.
D.
2、下列运算正确的是( )
A. 2a+3b=5ab B. (-a2)3=a6 C. (a+b)2=a2+b2 D. 2a2·3b2=6a2b2
3、一个正多边形的一个外角是 40°,则这个正多边形的边数是 ( )
A.8
B.9
C.10
D.12
4、已知a是实数,则一元二次方程+ax﹣4=0的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.根据a的值来确定
5、的倒数是( )
A.
B.
C.
D.
6、9的算术平方根是( )
A.3
B.-3
C.
D.±
7、如图1,矩形的一条边长为x,周长的一半为y.定义为这个矩形的坐标.如图2,在平面直角坐标系中,直线
,
将第一象限划分成4个区域.已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.
则下面叙述中正确的是( )
A.点A的横坐标有可能大于3
B.矩形1是正方形时,点A位于区域②
C.当点A沿双曲线向上移动时,矩形1的面积减小
D.当点A位于区域①时,矩形1可能和矩形2全等
8、如图,在平面直角坐标系中,四边形ABCD的各顶点坐标分别为A(1,0),B(2,0),C(2,2),D(0,1),四边形BFGH的各顶点坐标分别为F(4,0),G(4,4),H(0,2),则下列说法正确的是( )
A. 四边形ABCD与四边形BFGH相似但不位似
B. 四边形ABCD与四边形BFGH位似但不相似
C. 四边形ABCD与四边形BFGH位似,且相似比为1∶
D. 四边形ABCD与四边形BFGH位似,且相似比为1∶2
9、据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( )
A.6×105 B.6×106 C.6×107 D.6×108
10、直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是( )
A.﹣1 B.0 C.1 D.2
11、有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).
12、________
13、分式方程的解为______.
14、如图,在扇形中,
,点
为
的中点,
交
于点
,以点
为圆心,
的长为半径作
交
于点
.若
,则图中阴影部分的面积为__________.
15、如图,在四边形ABCD中,AB = 5,∠A = ∠B = 90°,O为AB中点,过点O作OM⊥CD于点M.E是AB上的一个动点(不与点A,B重合),连接CE,DE,若∠CED = 90°且=
.现给出以下结论:
(1)△ADE与△BEC一定相似;
(2)以点O为圆心,OA长为半径作⊙O,则⊙O与CD可能相离;
(3)OM的最大值是;
(4)当OM最大时,CD = .
其中正确的是 _________ .(写出所有正确结论的序号)
16、已知,则
的值为_________.
17、关于x的方程,有两个不等实根.
求k的取值范围;
是否存在实数k,使方程的两实根的倒数和为0?若存在,请求出k的值;若不存在,请说明理由.
18、如图所示,有一张矩形纸片ABCD,E、F分别是BC、AD上的点(不与顶点重合).如果直线EF将矩形分成面积相等的两部分,那么
(1)得到的两个四边形是否相似?若相似,请求出相似比;若不相似,请说明理由;
(2)这样的直线可以作多少条?
19、在等腰直角三角形中,
,
,
是斜边
的中点,连接
.
(1)如图1, 是
的中点,连接
,将
沿
翻折到
,连接
,当
时,求
的值.
(2)如图2,在上取一点
,使得
,连接
,将
沿
翻折到
,连接
交
于点
,求证:
.
20、如图,A(﹣1,0),B(4,0),C(0,3)三点在抛物线y=ax2+bx+c上,D为直线BC上方抛物线上一动点,E在CB上,∠DEC=90°
(1)求抛物线的函数表达式;
(2)如图1,求线段DE长度的最大值;
(3)如图2,F为AB的中点,连接CF,CD,当△CDE中有一个角与∠CFO相等时,求点D的横坐标;若不存在,请说明理由.
21、如图,CD与⊙O相切于点D,CB与⊙O相交于A、B两点,且圆心O在AB上.
(1)若,OD=2.求CD的长;
(2)若点E在⊙O上运动,连接DE,当弦DE平分∠ADB且与AB交于点F时:
①若AF=7,EF=13,求此时⊙O的直径;
②设DE长为x,直径AB长为t(,t为常数),求△ABD的面积S关于x的函数解析式(不要求写x的取值范围).
22、已知在平面直角坐标系中,一次函数y=x+3的图象与y轴交于点A,点M在正比例函数y=
x的图象x>0的那部分上,且MO=MA(O为坐标原点).
(1)求线段AM的长;
(2)若反比例函数y=的图象经过点M关于y轴的对称点M′,求反比例函数解析式,并直接写出当x>0时,
x+3与
的大小关系.
23、.如图,是
直径,弦
垂直于
,交
于点
,连接
,
,
.
(1)求半径;
(2)的弧长;
(3)求阴影面积.
24、某产家在甲、乙工厂生产同一商品,并将其分几天运往A地240吨,B地260吨,表1是两个工厂的商品记录,表2为该商品的运费标准(m,n为常数).
表1
时间 | 甲工厂商品记录 | 乙工厂商品记录 | 甲、乙两工厂总运费 |
第1天 | 生产商品200吨 | 生产商品300吨 |
|
第2天 | 运往A地30吨 | 运往A地10吨,运往B地20吨 | 1230元 |
第3天 | 运往B地20吨 | 运往B地40吨 | 1460元 |
甲、乙两厂往A,B地运输该商品的运费标准(单位:元/吨)
表2
目的地 工厂 | A | B |
甲 | 20 | 25 |
乙 | m | n |
(1)求m,n的值.
(2)若运费标准不变,要使剩余商品按要求运往A,B两地,且总运费最少,请给出剩余商品的运输方案.
(3)若从第4天开始,运输公司将甲工厂往B地的运费提高a元/吨,乙工厂往B地的运费降低a元/吨,其中a为正整数,若可用不超过7150元的费用按要求完成剩余商品的运输,求a的最小值.
邮箱: 联系方式: