1、一个空心的圆柱如图,那么它的左视图是( ).
2、如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=4,则AC的长为( )
A.2
B.2
C.2
D.
3、如图,,
与
交于点
,若
,
,则
的度数是( )
A.
B.
C.
D.
4、如图,点,
都在双曲线
上,点C,D分别是x轴、y轴上的动点(C,D不同时与原点重合),则四边形ABCD的周长的最小值为( )
A. B.
C.
D.
5、已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)( )
6、△ABC中,∠C=90°,AB=13,AC=12,以B为圆心,5为半径的圆与直线AC的位置关系是( )
A. 相切 B. 相交 C. 相离 D. 不能确定
7、下列四个实数中,最小的是( )
A.
B.-5
C.1
D.4
8、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
9、如图,AB是半圆O的直径,四边形CDMN和DEFG都是正方形,其中点C,D,E在AB上,点F,N在半圆上.若半圆O的半径为10,则正方形CDMN的面积与正方形DEFG的面积之和是( )
A.25
B.50
C.100
D.150
10、在相同时刻,物高与影长成正比,如果高为米的标杆影长为
米,那么影长为
米的旗杆的高为( )
A.米 B.
米 C.
米 D.
米
11、若关于的一元二次方程
有两个实数根,则
的取值范围是__________.
12、重庆一中学生在第32届重庆市青少年科技创新大赛中再获佳绩,累计26人次获奖,共获奖金13000元.将数13000用科学计数法表示为______.
13、在一个不透明的布袋中装有6个红球和若干个白球,它们除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白球的频率稳定在0.6,则布袋中白球有_______个.
14、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为_____.
15、如图所示,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA等于_____.
16、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离S(km)与时间t(h)的关系如图所示,则甲出发____小时后与乙相遇.
17、数学概念
在两个等腰三角形中,如果其中一个三角形的底边长和底角的度数分别等于另一个三角形的腰长和顶角的度数,那么称这两个等腰三角形互为姊妹三角形.
概念理解
(1)如图①,在△ABC中,AB=AC,请用直尺和圆规作出它的姊妹三角形(保留作图痕迹,不写作法).
特例分析
(2)①在△ABC中,AB=AC,∠A=30°,,求它的姊妹三角形的顶角的度数和腰长;
②如图②,在△ABC中,AB=AC,D是AC上一点,连接BD.若△ABC与△ABD互为姊妹三角形,且△ABC∽△BCD,则∠A= °.
深入研究
(3)下列关于姊妹三角形的结论:
①每一个等腰三角形都有姊妹三角形;
②等腰三角形的姊妹三角形是锐角三角形;
③如果两个等腰三角形互为姊妹三角形,那么这两个三角形可能全等;
④如果一个等腰三角形存在两个不同的姊妹三角形,那么这两个三角形也一定互为姊妹三角形.
其中所有正确结论的序号是 .
18、已知:如图,抛物线y=ax2+bx+c与x轴交于点A(0,4)、E(0,-2)两点,与y轴交于点B(2,0),连结AB。过点A作直线AK⊥AB,动点P从点A出发以每秒个单位长度的速度沿射线AK运动,设运动时间为t秒,过点P作PC⊥x轴,垂足为C,把△ACP沿AP对折,使点C落在点D处。
(1)、求抛物线的解析式;
(2)、当点D在△ABP的内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;
(3)、是否存在这样的时刻,使动点D到点O的距离最小,若存在请求出这个最小距离,若不存在说明理由.
19、如图,点A、B在⊙O上,CB为⊙O的切线,AC=BC,求证:AC为⊙O的切线.
20、如图,直线y =-x+4与x轴,y轴分别交于点B,C,点A在x轴负半轴上,且OA=OB, 抛物线y =ax2+bx+4经过A,B,C三点.
(1)求抛物线的解析式;
(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;
(3)设点E为抛物线对称轴与直线BC的交点,若A,B,E三点到同一直线的距离分别是d1,d2,d3,问是否存在直线l,使得d1= d2=d3? 若存在,请直接写出d3的值,若不存在,请说明理由.
21、如图,反比例函数的图像与一次函数
的图像交于两点A(1,3),B(n,-1).
⑴ k= ,n= ;
⑵ 求一次函数的表达式;
⑶ 结合图像直接回答:不等式<mx+b解集是 ;
⑷ 求△AOB的面积.
22、先化简,再求值:,其中
23、已知反比例函数y=(m﹣2)
(1)若它的图象位于第一、三象限,求m的值;
(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.
24、如图,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为xcm,△ADE的面积为ycm2.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量、分析,得到了y与x的几组对应值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 |
| 4.8 | 5.2 | 4.6 | 0 |
(2)如图,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当△ADE的面积为4cm2时,AC的长度约为___________cm.
邮箱: 联系方式: