1、若反比例函数的图象经过点(5,﹣1).则实数k的值是
A.
B.
C.
D.5
2、如图,AB是⊙O的直径,∠ADC=,OA=2,则BC的长为( )
A. 2 B. C. 4 D.
3、如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是( )
A. B.
C.
D.
4、轮船航行到A处时,观察到小岛B的方向是北偏西32°,那么同时从B处观测到轮船A的方向是( )
A. 南偏西32° B. 东偏南32° C. 南偏东58° D. 南偏东32°
5、下列投影中,是平行投影的是
A. B.
C. D.
6、小红和小花在路灯下的影子一样长,则她们的身高关系是( )
A. 小红比小花高 B. 小红比小花矮
C. 小红和小花一样高 D. 不确定
7、计算(a2)3÷(a2•a3)的结果是( )
A. 0 B. 1 C. a D. a3
8、如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为( )
A.70° B.60° C.50° D.40°
9、下列运算正确的是( )
A. B.
C.
D.
10、一种液体每升含有36 000 000个有害细菌,把36 000 000用科学记数法表示应该是( )
A.3.6×107 B.3.6×106 C.36×106 D.0.36×108
11、如图,在平面直角坐标系中,抛物线y=a(x-3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=-x2-2于点B,则A、B两点间的距离为 .
12、如图,直线y=﹣3x+3与y轴交于点A,与x轴交于点B,以线段AB为边,在线段AB的左侧作正方形ABCD,点C在反比例函数y=(k≠0)的图象上,当正方形ABCD沿x轴正方向向右平移_____个单位长度时,正方形ABCD的一个顶点恰好落在该反比例函数图象上.
13、某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心某十字路口,观察、统计上午7:00~12:00之间闯红灯的人次,制作了如下两个统计图:
(1)图一中各时段闯红灯人次的平均数为 人次;
(2)图一中各时段闯红灯人次的中位数是 人次;
(3)该路口这一天上午7:00~12:00之间闯红灯的未成年人有 人次;
(4)估计一周(七天)内该路口上午7:00~12:00之间闯红灯的中青年约有 人次;
(5)是否能以此估计全市这一天上午7:00~12:00之间所有路口闯红灯的人次?
答: .为什么?答: .
14、学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.乙回到学校用了______分钟.
15、如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是_________.
16、已知一扇形的半径长是4,圆心角为60°,则这个扇形的面积为_____.
17、在平面直角坐标系中,设二次函数(m是实数).
(1)当时,若点
在该函数图象上,求n的值.
(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?
(3)已知点,
都在该二次函数图象上,求证:
.
18、(本题10分)如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E, DF切半圆于点F。已知∠AEF=135°。
(1)求证:DF∥AB;
(2)若OC=CE,BF=,求DE的长。
19、如图,已知直线,直线
分别与
交于点
.在线段
上求作一点A,使点A到a,b的距离相等.
20、下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)
21、如图,是
的直径,点
在
的延长线上,
与
相切于点
,
,交
的延长线于点
.
(1)求证:;
(2)若,
,求
的长.
22、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在图中补全该函数图象;
… | 0 | 1 | 3 | 4 | 5 | 6 | 7 | … | ||||
… |
| 2 |
| … |
(2)写出该函数的一条性质: ______________________;
(3)已知函数的图象如图所示,结合你所画出的函数图象,请直接写出方程
的解(保留1位小数,误差不超过
)
23、关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
24、如图,已知射线OC为∠AOB的平分线,且OA=OB,点P是射线OC上的任意一点,连接AP、BP.
(1)求证:△AOP≌△BOP;
(2)若∠AOB=50°,且点P是△AOB的外心,求∠APB的度数;
(3)若∠AOB=50°,且△OAP为钝角三角形,直接写出∠OAP的取值范围.
邮箱: 联系方式: