1、如图,一次函数与反比例函数的图象交于点A(1,3),B(3,1)两点,在第一象限,当一次函数大于反比例函数的值时,x的取值范围是( )
A. x<1 B. 1<x<3 C. x>3 D. x>4
2、下列运算正确的是 ( )
A. (2a2)3=6a6 B. a3.a2=a5 C. 2a2+4a2=6a4 D. (a+2b)2=a2+4b2
3、如图,AB,CD是⊙O的直径,弧弧
,若∠AOE=32°,则∠COE的度数是( )
A. 32° B. 60° C. 68° D. 64°
4、在下面的四个几何图形中,左视图与主视图不相同的几何体是( )
A.长方体
B.正方体
C.球
D.圆锥
5、如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4
B.5
C.6
D.8
6、一个三角形的三条中位线的长为6、7、8,则此三角形的周长为( )
A.40
B.41
C.42
D.43
7、二次函数的图象如图所示,下列结论:①、2a+b=0;②、a+c>b;③抛物线与x轴的另一个交点为(3,0);④、abc>0。其中正确的结论的个数是( )
A. 1个 B. 2 个 C. 3个 D. 4个
8、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )
A.3
B.2
C.1
D.0
9、在平面直角坐标系中,把点绕原点O顺时针旋转
,所得到的对应点
的坐标为( )
A.
B.
C.
D.
10、某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有( )
A.50人
B.64人
C.90人
D.96人
11、计算:2sin30°+tan45°=_____.
12、计算: _____.
13、如图,边长为3的正方形ABCD的顶点A、B在一个半径为3的圆上,顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动. 当滚动一周回到原来位置时,点C运动的路径长为__________.
14、如图,一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为_____.
15、如图,扇形OAB是圆锥的侧面展开图,点O、A、B均在小正方形的顶点上,若每个小正方形的边长均为1,则这个圆锥的底面半径为_____.
16、计算:__________.
17、(1)计算:2cos30°-tan45°-;
(2)已知α是锐角,且sin(α+15°)=,求
-4cosα-(π-3.14)0+tanα+
的值.
18、某市教育局实施对口帮扶活动中,准备为部分农村学校的小学生捐赠一批课外读物,为了解学生课外读物阅读的喜好情况,现对该市农村学校中随机抽取部分小学生进行问卷调查,调查要求每人只选一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,图(1)与图(2)是整理后绘制的两幅不完整的统计图.
(1)本次调查抽取的人数是________人;在扇形统计图中,“漫画”所在扇形的圆心角为________度.
(2)本次调查中喜欢“小说”的人数是________人;若该市农村小学有25000名学生,则由这两个统计图可估计喜爱“科普常识”的小学生约有________人.
(3)现在有一种漫画书,发到最后只剩一本但小丽和小芳都想要,于是她们设计了一种游戏,规则是:现有4张卡片上分别写有7,8,9,10四个整数,先让小丽随机抽取一张后不放回,再由小芳随机抽取一张,若抽取的两张卡片上的数字之和是2的倍数则小丽得到这本书,若抽取的两张卡片上的数字之和是3的倍数则小芳得到这本书.用列表法或树状图分析这种方法对二人是否公平?
19、2021年11月5日至10日第四届中国国际进口博览会在上海举行,意向成交707.2亿美元,彰显了中国的经济实力和人民生活品质的提升.某省采购团5号意向成交亿美元,6、7号意向成交价平均每天以
的增长率递增.
(1)707.2亿用科学记数法表示为_________;
(2)该省采购团7号意向成交_________亿美元;(用含、
的代数式表示)
(3)该省采购团5-7号意向成交共16.55亿美元,若,求
的值.
20、浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水“五水共治”的重大决策,某中学为了提高学生参与“五水共治”的积极性举行了“五水共治”知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
(1)这次知识竞赛共有多少名学生?
(2)浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水“五水共治”的重大决策, “二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率。
21、在ABC中,CA=CB,∠ACB=90°.点P是平面内不与点A、C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转90°得到线段DP,连接AD,BD,CP.
(1)如图1,求的值及直线BD与直线CP相交所成的较小角的度数;
(2)如图2,若点E、F分别是CA、CB的中点,点P在直线EF上,当点C,P,D在同一直线上时,求的值.
22、某公司决定从厂家购进甲、乙两种不型号的显示器共50台,购进显示器的总金月额不超过77000元,已知甲、乙的显示器的价格分别为1000元和2000元。求该公司至少购进甲型显示器多少台?若要求甲型显示器的台数不超过乙型显示器的台数,则有哪些购买方案?
23、图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tanβ=
,以O为原点,OA所在直线为x轴建立直角坐标系.
(1)求点P的坐标;
(2)水面上升1m,水面宽多少?
24、问题提出:某段楼梯共有10个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从该段楼梯底部上到顶部共有多少种不同的走法?
问题探究:
为解决上述实际问题,我们先建立如下数学模型:
如图①,用若干个边长都为1的正方形(记为1×1矩形)和若干个边长分别为1和2的矩形(记为1×2矩形),要拼成一个如图②中边长分别为1和n的矩形(记为1×n矩形),有多少种不同的拼法?(设表示不同拼法的个数)
为解决上述数学模型问题,我们采取的策略和方法是:一般问题特殊化,
探究一:先从最特殊的情形入手,即要拼成一个1×1矩形,有多少种不同拼法?
显然,只有1种拼法,如图③,即种.
探究二:要拼成一个1×2矩形,有多少种不同拼法?
可以看出,有2种拼法,如图④,即种.
探究三:要拼成一个1×3矩形,有多少种不同拼法?
拼图方法可分为两类:一类是在图④这2种1×2矩形上方,各拼上一个1×1矩形,即这类拼法共有2种;另一类是在图③这1种1×1矩形上方拼上一个1×2矩形,即这类拼法有1种.如图⑤,即(种).
探究四:仿照上述探究过程,要拼成一个1×4矩形,有多少种不同拼法?请画示意图说明,并求出结果.
探究五:
要拼成一个1×5矩形,有______种不同拼法.(直接写出结果,不需画图)
要拼成一个1×6矩形,有______种不同拼法.(直接写出结果,不需画图)
要拼成一个1×7矩形,有______种不同拼法.(直接写出结果,不需画图)
问题解决:
某段楼梯共有10个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从该段楼梯底部上到项部共有______种不同的走法.(直接写出结果,不需画图)
邮箱: 联系方式: