1、的倒数是( )
A. 3 B. -3 C.
D.
2、如果点是抛物线
上两个不同的点,那么
的值为( )
A.4
B.5
C.6
D.7
3、在方差的计算公式s=
[(x
-20)
+(x
-20)
+……+(x
-20)
]中,数字10和20分别表示的意义可以是( )
A.数据的个数和方差
B.平均数和数据的个数
C.数据的个数和平均数
D.数据组的方差和平均数
4、如图,夜间小明在路灯下由甲处走到乙处,他在地面上的影子( )
A. 先变长后变短 B. 先变短后变长 C. 逐渐变短 D. 逐渐变长
5、在锐角∠AOB的内部有一点P,作P关于角两边所在直线的对称点P1,P2,判断三角形P1OP2的形状是( )
A.不能确定
B.一定是锐角三角形
C.一定是等腰三角形
D.一定是等边三角形
6、2022年北京冬奥会于2月4日开幕作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162000米.数字162000用科学记数法表示为( )
A.
B.
C.
D.
7、已知,则
的值是( )
A. -2 B. 3 C. -2或3 D. -2且3
8、如图,将边长为4的菱形纸片ABCD折叠,使点A恰好落在对角线的交点O处,若折痕,则
( )
A.
B.
C.
D.
9、2019-nCoV 新型冠状病毒的直径约为0.00000012m,0.00000012这个数用科学计数法表示为( )
A. B.
C.
D.
10、下列方程是一元二次方程的选项是( ).
A.x-1=0 B.x2-1=0 C.-1=0 D.x+y=0
11、﹣2018的倒数是_____.
12、如图所示的网格是正方形网格,点,
,
均在格点上,则
__________.
13、分解因式_____.
14、如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.
15、计算:(2019﹣π)0+|﹣4|=_____.
16、一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20(+1)海里,渔船将险情报告给位于A处的救援船后,沿北偏西65°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为________海里/分.
17、如图,两座建筑物的水平距离CD=60m,从点B测得点A的俯角∠MBA为30°,测得点C的俯角∠MBC为38°.求这两座建筑物的高度.参考数据:sin38°=0.62,cos38°≈0.79,tan38°=0.78,≈1.73,
≈1.41.
18、计算
(1)(3.14-x)0+-2sin45°+(
)-1.
(2)解方程:.
19、图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25 cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.
(1)求点M离地面AC的高度BM;
(2)设人站立点C与点A的水平距离AC=55 cm,求铁环钩MF的长度.
20、将三角形各边向外平移1个单位并适当延长,得到如图(1)所示的图形,变化前后的两个三角形相似吗?如果把三角形改为正方形、长方形呢?
21、如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.
(1)求∠EAF的度数;
(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.
22、小明和小强为了买同一种火车模型,决定从春节开始攒钱,小明原有200元,以后每月存50元;小强原有150元,以后每月存60元.设两人攒钱的月数为x(个)(x为整数).
(1)根据题意,填写下表:
攒钱的月数/个 | 3 | 6 | … | x |
小明攒钱的总数/元 | 350 |
| … |
|
小强攒钱的总数/元 |
| 510 | … |
|
(2)在几个月后小明与小强攒钱的总数相同?此时他们各有多少钱?
(3)若这种火车模型的价格为780元,他们谁能够先买到该模型?
23、计算:()﹣2+(π﹣2019)0+sin60°+|
﹣2|
24、观察下列各式:
①, ②
,
③, ④
,
…… ……;
按照以上规律,解决下列问题:
(1)写出第6个等式:________;
(2)写出你猜想的第个等式:________(用含
的等式表示),并证明.
邮箱: 联系方式: