1、如图,AB是⊙O的弦,OC⊥AB于点D,交⊙O于点C,若半径为5,OD=3,则弦AB的长为
A.5 B.6 C.7 D.8
2、若关于的一元二次方程
有实数根,则
的取值范围是( )
A. >-1 B.
≥-1 C.
> -1且
≠0 D.
≥-1且
≠0
3、已知反比例函数的图象如图2,则一元二次
方程根的情况是( )
A.有两个不等实根 B.有两个相等实根
C.没有实根 D.无法确定。
4、设,关于
的一次函数
,当
时的最大值是( )
A.
B.
C.
D.
5、下列图形中,既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D.
6、《孙子算经》中有这样一个问题:今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?意思是:用绳子去量一根木材的长,绳子还余尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x尺,绳子长为y尺,则根据题意列出的方程组是( )
A.
B.
C.
D.
7、踩高跷又称为“扎高脚”“缚柴脚”,如图是一位演员踩着长度为身高一半的高跷,脚踏处距高跷顶端,演员踩在高跷上时,“身高”为
.设演员的身高为
,高跷的长度为
,则下列方程组正确的是( )
A.
B.
C.
D.
8、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CD=4CF,下列结论:①∠BAE=30°,②△ABE∽△ECF,③AE⊥EF,④AE=2EF,⑤△ABE∽△AEF。其中正确结论的个数为( )
A. 2 B. 3 C. 4 D. 5
9、已知直线不经过第一象限,则
的取值范围是
( ).
A. B.
C.
D.
10、某种彩票的中奖机会是1%,下列说法正确的是( )
A.买1张这种彩票一定不会中奖
B.买1张这种彩票一定会中奖
C.买100张这种彩票一定会中奖
D.当购买彩票的数量很大时,中奖的频率稳定在1%
11、因式分解:-2x2y+8xy-6y=__________.
12、如图,在△ABC中,D为BC上的一点,E为AD上的一点,BE的延长线交AC于点F.已知,
(a,b为不小于2的整数),则
的值是____________.
13、若= ________.
14、若m,n是方程x2+x﹣2017=0的两个实数根,则m2+2m+n的值为____.
15、直线y=−2x+m与直线y=2x−1的交点在第四象限,则m的取值范围是____.
16、已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=_____.
17、抛物线与x轴交于点
和
,与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,P是线段BC上方抛物线上一点,连接PA,交线段BC于点D,当时,求点P的坐标;
(3)如图2,在(2)的条件下,当点P在对称轴右侧时,动点M从点A出发,以每秒2个单位的速度向点B运动,同时动点N以从点B出发,以每秒3个单位的速度向点C运动,其中一个点到达终点时另一个点随之停止,将线段MN绕点N逆时针旋转90°得到线段NG,连接MG,设运动时间为t秒,直接写出当一边与AP平行时t的值.
18、据《中国教育报》2004年5月24日报道:目前全国有近3万所中小学建设了校园网,该报为了了解这近3万所中小学校园网的建设情况,从中抽取了4600所学校,对这些学校校园网的建设情况进行问卷调查,并根据答卷绘制了如图的两个统计图:
说明:统计图1的百分数=×100%;
统计图2的百分数=×100%.
根据上面的文字和统计图提供的信息回答下列问题:
(1)在这个问题中,总体指什么?样本容量是什么?
(2)估计:在全国已建设校园网的中小学中:
①校园网建设时间在2003年以后(含2003年)的学校大约有多少所?
②校园网建设资金投入在200万元以上(不含200万元)的学校大约有多少所?
(3)所抽取的4600所学校中,校园网建设资金投入的中位数落在那个资金段内?
(4)图中还提供了其他信息,例如:校园网建设资金投入在10~50万元的中小学的数量最多等,请再写出其他两条信息.
19、(1)(方法回顾)连接三角形任意两边中点的线段叫三角形的中位线,探索三角形中位线的性质,方法如下:
①如图1,D、E分别是AB、AC中点,延长DE到F,使EF=DE,连接CF;
②证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到线段DE与BC的位置关系和数量关系分别为_______、________;
(2)(初步运用)如图2,正方形ABCD中,E为边AD中点,G、F分别在边AB、CD上,且AG=2,DF=3,∠GEF=90°,求GF长.
(3)(拓展延伸)如图3,四边形ABCD中,∠A=100°,∠D=110°,E为AD中点,G、F分别为AB、CD边上的点,若AG=2,DF=,∠GEF=90°,求GF长.
20、2019年12月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.
请你根据上面的信息,解答下列问题
(1)本次共调查了_______名员工,条形统计图中________;
(2)若该公司共有员工1000名,请你估计不了解防护措施的人数;
(3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司群内普及防护措施,求恰好抽中一男一女的概率.
21、为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
22、如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).
(1)用含有x的代数式表示CE的长;
(2)求点F与点B重合时x的值;
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.
23、如图,在△ABC 中,AD⊥BC 于 D(其中 BD>CD),BE⊥AC 于 E,AD 与 BE 相交于点 F,直线 AD 与△BCF 的外接圆 O 交于点 H,点 M 在圆 O 上,满足弧 HM=弧 CF,连接 FM.
(1)求证:AF=CM;
(2)若∠ABE=45°,FH ,圆O的直径为
,求BF的值.
24、如图,知四边形ABCD是矩形,∠ECD=∠DBA,∠CED=90°,AF⊥BD点F.求证:四边形BCEF是平行四边形.
邮箱: 联系方式: