1、现有《北京2022年冬奥会一雪上运动》纪念邮票4张,正面图案如图所示,它们除此之外完全相同.把4张邮票背面朝上洗匀,从中随机抽取两张,则这两张邮票正面图案恰好是“越野滑雪”和“高山滑雪”的概率是( )
A.
B.
C.
D.
2、正八边形的中心角是( )
A. 45° B. 135° C. 360° D. 1080°
3、 下列结论中,正确的是 ( )
A. 圆的切线必垂直于半径 B. 垂直于切线的直线必经过圆心
C. 垂直于切线的直线必经过切点 D. 经过圆心与切点的直线必垂直于切线
4、在下列交通标志中,是中心对称图形的是( )
A. B.
C.
D.
5、若点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数的图象上,则( )
A.y1>y2>y3
B.y2>y1>y3
C.y3>y1>y2
D.y1>y3>y2
6、如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为( )
A.30°
B.60°
C.90°
D.120°
7、一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,摸一次,摸到黑球的概率为( )
A. B.
C.
D.1
8、如图,是
外一点,PA,PB分别切
于点A,B,点C在优弧
上,若
,则
等于( )
A.68°
B.34°
C.112°
D.56°
9、如图所示,灯在距地面3米的A处,现有一木棒2米长,当B处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( )
A. 先变长,后变短 B. 先变短,后变长 C. 不变 D. 先变长,再不变,后变短
10、如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1)
11、在中,
,则以
为圆心,以
为半径的圆与
的位置关系是________.
12、若关于的不等式组
的所有整数解的和是-9,则
的取值范围是______.
13、如图,在平面直角坐标系中,函数与
的图象交于
,
两点,过
作
轴的垂线,交函数
的图象于点
,连接
,则
的面积为______________
14、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .
15、实验表明,当导线的长度一定时,导线的电阻与它的横截面积成反比例.一条长为100 cm的导线的电阻R(Ω)与它的横截面积S(cm2)的函数图象如图所示,那么,其函数关系式为___________,当S=2 cm2时, R=______________(Ω)
16、如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD外的两点,且AE=FC=3, BE=DF=4,则EF的长为_______.
17、在平面直角坐标系中,抛物线
:
的对称轴是
轴,过点
作一直线与抛物线
相交于
,
两点,过点
作
轴的垂线与直线
相交于点
.
(1)求抛物线的解析式;
(2)判断点是否在直线
上,并说明理由;
(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线上的任意一点(除顶点外)作该抛物线的切线
,分别交直线
和直线
于点
,
,求
的值.
18、已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.
19、计算:
解方程:
20、某校在参加了市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:
小明:“选科学素养和人文素养的同学分别为16人,12人.”
小颖:“选数学素养的同学比选阅读素养的同学少4人.”
小雯:“选科学素养的同学占样本总数的20%.”
(1)这次抽样调查了多少名学生?
(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?
(3)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?
21、如图,已知抛物线经过点
、
,与
轴交于点
.
(1)求抛物线的解析式;
(2)若点为该抛物线上一点,且点
的横坐标为
,
①当点在直线
下方时,过点
作
轴,交直线
于点
,作
轴,交直线
于点
,求
的最大值;
②若,求
的值.
22、某校综合实践小组要对一幢建筑物的高度进行测量.如图,该小组在一斜坡坡脚
处测得该建筑物顶端
的仰角为
,沿斜坡向上走
到达
处,(即
)测得该建筑物顶端
的仰角为
.已知斜坡的坡度
,请你计算建筑物
的高度(即
的长,结果保留根号).
23、计算:.
24、(1)发现:如图①,点A为一动点,点B和点C为两个定点,且,
(
).
填空:当点位于_______时,线段
的长取得最小值,且最小值为_______(用含
的式子表示);
(2)如图②应用:点为线段
外一动点,且
,
,如图2分别以
、
为边作等边三角形
和等边三角形
,连接
、
.
①请找出图中与相等的线段,并说明理由;
②直接写出线段长的最小值.
(3)拓展:如图3,在平面直角坐标系中,点的坐标为
,点
为线段OB外一动点,且
,
,
,请求出
的最小值并直接写出点
的坐标.
邮箱: 联系方式: