1、某工程队承接了长为8000米的道路施工任务,为了迎接新年的到来,实际工作时每天比原计划多施工20米,结果提前20天完成任务.设原计划每天施工道路长为x米,则以下所列方程中正确的是( ).
A.
B.
C.
D.
2、2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗”,预计可容纳80000人,将80000用科学记数法表示为( )
A.80×103 B.0.8×105 C.8×104 D.8×103
3、下列图案中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
4、将抛物线向左平移1个单位,再向下平移3个单位,则所得图象的函数解析式是( )
A.
B.
C.
D.
5、的倒数是( )
A.
B.﹣
C.2019
D.﹣2019
6、据省统计局公布的数据,安徽省2019年第二季度GDP总值约为7.9千亿元人民币,若我省第四季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是( )
A.y=7.9(1+2x) B.y=7.9(1-x)2
C.y=7.9(1+x)2 D.y=7.9+7.9(1+x)+7.9(1+x)2
7、下列事件属于必然事件的是( )
A.经过有交通信号的路口,遇到红灯
B.任意买一张电影票,座位号是双号
C.向空中抛一枚硬币,不向地面掉落
D.三角形中,任意两边之和大于第三边
8、如图,,
,
,…均为斜边在
轴上且斜边长分别为2,4,6…的等腰直角三角形.若
的顶点坐标分别是
,
,
,则按图中所示规律,点
的坐标是( )
A.
B.
C.
D.
9、函数y=的自变量x的取值范围在数轴上可表示为( )
A.
B.
C.
D.
10、若一个多边形的内角和是,则该多边形的边数( )
A.4
B.5
C.6
D.7
11、化简:=_____.
12、已知圆锥的母线长是,侧面积是
,则圆锥侧面展开图的圆心角为______.
13、如图,在平面直角坐标系中,点A的坐标为(3,4),那么sin的值是 _____
14、某生产线在同一时间只能生产一笔订单,即在完成一笔订单后才能开始生产下一笔订单中的产品.一笔订单的“相对等待时间”定义为该笔订单的等待时间与生产线完成该订单所需时间之比.例如,该生产线完成第一笔订单用时5小时,之后完成第二笔订单用时2小时,则第一笔订单的“相对等待时间”为0,第二笔订单的“相对等待时间”为.现有甲、乙、丙三笔订单管理员估测这三笔订单的生产时间(单位:小时)依次为a,b,c,其中
,则使三笔订单“相对等待时间”之和最小的生产顺序是________.
15、一辆客车和一辆货车沿着同一条线路以各自的速度匀速从甲地行驶到乙地,货车出发3小时后客车再出发,客车行驶一段时间后追上货车并继续向乙地行驶,客车到达乙地休息1小时后以原速按原路匀速返回甲地,途中与货车相遇.客车和货车之间的距离(千米)与客车出发的时间
(小时)之间的关系的部分图象如图所示.当客车返回与货车相遇时,客车与甲地相距 千米.
16、①y=3x;②y=;③
=8;④y=2x-3;⑤xy=36,在这五个等式中,y是x的反比例函数的是________.(只填序号)
17、某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各所示:项目的工作量如图:
(1)从统计图中可知:擦玻璃的面积占总面积的百分比为 ,每人每分钟擦课桌椅 m2;
(2)扫地拖地的面积是 m2;
(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?
18、如图,点A是反比例函数 (x>0)图象上的任意一点,过点A作AB∥x轴,交另一个反比例函数
(k<0,x<0)的图象于点B,且S△AOB=5.
(1) k的值为_______;
(2) 若点A的横坐标是1,
①求∠AOB的度数;
②在y2的图象上找一点P(异于点B), 使S△AOP=S△AOB,求点P的坐标.
19、如图,//
,点E是CD的中点.
(1)用尺规完成以下基本作图:作∠BDC的平分线(保留作图痕迹,不写作法);
(2)在(1)的条件下,设∠BDC的平分线交AB于点F,连接EF交BC于点H,若HB=HC,求证:四边形BDEF是菱形.
证明:∵点E是CD的中点,∴CE=DE
∵CH=BH, ∴_______
∵//
,∴四边形BDEF是平行四边形
∵//
, ∴______
∵DF平分∠BDC,∴______
∴∠BFD=∠BDF,∴______,∴四边形BDEF是菱形.
20、如图,在中,
,
是
的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与
交于点F,延长BA到点G,使得
,连接FG.
备用图
(1)求证:FG是的切线;
(2)若的半径为4.
①当,求AD的长度;
②当是直角三角形时,求
的面积.
21、计算:.
22、问题提出学习了全等三角形的判定方法(“SSS”“SAS”“ASA”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
初步思考:将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF.然后对∠ABC进行分类,可分为“∠ABC是锐角、直角、钝角”三种情况进行探究。
第一种情况:当∠ABC是锐角时,AB=DE不一定成立;
第二种情况:当∠ABC是直角时,根据“HL”,可得△ABC≌ΔDEF,则AB=DE;
第三种情况:当∠ADC是钝角时,则AB=DE.
如图,在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC是钝角,求证:AB=DE.
方法归纳化归是一种有效的数学思维方式,一般是将未解决的问题通过交换转化为已解决的问题.观群发现第三种情况可以转化为第二种情况,如图,过点C作CG⊥AB交廷长线于点G.
(1)在ΔDEF中用尺规作出DE边上的高FH,不写作法,保留作图痕迹;
(2)请你完成(1)中作图的基础上,加以证明AB=DE.
23、如图是小强洗漱时的侧面示意图,洗漱台(矩形)靠墙摆放,高
,宽
,小强身高
,下半身
,洗漱时下半身与地面成
(
),身体前倾成
(
),脚与洗漱台距离
(点
,
,
,
在同一直线上).
(1)此时小强头部点与地面
相距多少?
(2)小强希望他的头部恰好在洗漱盆
的中点
的正上方,他应向前或后退多少?(
,
,
,计算结果精确到
)
24、小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
邮箱: 联系方式: