1、新冠病毒平均直径为0.0001毫米,但它以飞沫传播为主,而飞沫的直径是大于5微米的,所以N95或医用口罩能起到防护作用,用科学记数法表示0.0001毫米是( )
A.0.1×10﹣5毫米 B.10﹣4毫米 C.10﹣3毫米 D.0.1×10﹣3毫米
2、方程x2+3x-l=0由于x壬0,因此可化为x+3=,则原方程的根可视为函数y=x+3与y=
图像交点的横坐标,利用图像估计一元三次方程x3+2x2-2=0的根x0所在的范围是
A.1<x0<2 B.0<x0<l C.-l<x0<0 D.-2<x0<-l
3、下列运算正确的是( )
A.
B.
C.
D.
4、在下列各数中,属于无理数的是()
A. 4 B. C.
D.
5、某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )
A. 10,12 B. 12,11 C. 11,12 D. 12,12
6、在对一组样本数据进行分析时,小华列出了方差的计算公式:,由公式提供的信息,则该样本的中位数是( )
A.2
B.3
C.4
D.5
7、下列运算正确的是( )
A.
B.
C.
D.
8、使式子有意义的x取值范围是( )
A.x>-1 B.x≥-1 C.x<-1 D.x≤-1
9、如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是( )
A. 相离 B. 相交
C. 相切 D. 以上三种情况均有可能
10、如果关于x的一元二次方程有两个不相等的实数根,那么
的取值范围是( )
A. >
B.
且
C.
<
D.
>
且
11、如图,在矩形中,点E在边
上,将
沿
折叠后点B的对应点落在对角线
上的点F处.若
,
,则
的长是____.
12、约翰斯·霍普金斯大学新冠肺炎疫情统计数据显示,截至北京时间4月13日06时30分,全球新冠肺炎确诊病例超184万例,将1840000用科学计数法表示是_______.
13、某市常住人口约为5245000人,数字5245000用科学记数法表示为 .
14、数学课上,王老师让同学们对给定的正方形,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:
甲同学:,
,
,
;
乙同学:,
,
,
;
丙同学:,
,
,
;
丁同学:,
,
,
;
上述四名同学表示的结果中,四个点的坐标都表示正确的同学是__________.
15、如果抛物线y=(m +1)2x2+x+m2﹣1经过原点,那么m的值等于____.
16、在和
中,若
,
,
,
,则当
________时,
.
17、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)
18、钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2022年新型冠状病毒防治》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:
收集数据:
甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理数据:
成绩x(分) | ||||
甲小区 | 2 | 5 | 8 | a |
乙小区 | 3 | 7 | 5 | 5 |
分析数据:
统计量 | 平均数 | 中位数 | 众数 |
甲小区 | 85.75 | 87.5 | b |
乙小区 | 83.5 | c | 80 |
应用数据:
(1)填空:________,
________,
________.
(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;
(3)社区管理员看完统计数据,准备从成绩在60到70分之间(包含60分和70分)的两个小区中随机抽取2人进行再测试,请求出抽取的两人恰好一个是甲小区、一个是乙小区的概率.
19、如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,3)、B(9,5
),C(14,0),动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA﹣AB﹣BC运动,在OA、AB、BC上运动的速度分别为3,
,
(单位长度/秒),当P、Q中的一点到达C点时,两点同时停止运动.
(1)求AB所在直线的函数表达式;
(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值;
(3)在P、Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.
20、图1、图2分别是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.
(1)在图1中画出以为直角边的直角
,点
在小正方形的顶点上,且
;
(2)在图2中画出以为腰的钝角等腰
,点
在小正方形的顶点上,且
的面积为10.并直接写出线段
的长.
21、某超市为了回惯顾客,计划于周年店庆当天举行抽奖活动.凡是购物金额达到m元及以上的顾客,都将获得抽奖机会.规则如下:在一个不透明袋子里装有除数字标记外其它完全相同的4个小球,数字标记分别为“a” 、“b”、“c”、“0” (其中正整数a、b、c满足a+b+c=30且a>15).顾客先随机摸出一球后不放回,再摸出第二球,则两球标记的数字之和为该顾客所获奖励金额(单位:元)、经调查发现,每日前来购物的顾客中,购物金额及人数比例如下表所示:
购物金额x (单位:元) | 0<x<100 | 100≤x<200 | 200≤x<300 | x≥300 |
人数比例 |
现预计活动当天购物人数将达到200人.
(1)在活动当天,某顾客获得抽奖机会,试用画树状图或列表的方法,求该顾客获得a元奖励金的概率;
(2)以每位抽奖顾客所获奖励金的平均数为决策依据,超市设定奖励总金额不得超过2000元,且尽可能让更多的顾客参与抽奖活动,问m应定为100元?200元?还是300元?请说明理由.
22、如图,一次函数与反比例函数
的图象交于A(1,6),B(3,m)两点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
23、如图,⊙O经过点C,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC,交DC的延长线于点E,且AC平分∠EAB。
求证:DE是⊙O的切线;
24、已知抛物线.
(1)若b=2a,求抛物线的对称轴;
(2)若a=1,且抛物线的对称轴在y轴右侧.
①当抛物线顶点的纵坐标为1时,求b的值;
②点,
,
在抛物线上,若
,请直接写出b的取值范围.
邮箱: 联系方式: