1、下列水平放置的四个几何体中,左视图是四边形的几何体共有( )
A. 1个 B. 2个 C. 3个 D. 4个
2、如图是由一个长方体和一个圆锥组成的几何体,它的左视图是( )
A.
B.
C.
D.
3、下列函数的图象,一定经过原点的是( )
A.
B.
C.
D.
4、如图是一个正方体展开图,把展开图折叠成正方体后,“最”字一面的相对面上的字是( )
A.能 B.我 C.行 D.棒
5、如图,函数(x>0)和
(x>0)的图象将第一象限分成三个区域,点M是②区域内一点,MN⊥x轴于点N,则△MON的面积可能是( )
A.0.5. B.1. C.2. D.3.5.
6、计算的结果等于( )
A.
B.
C.
D.
7、已知抛物线的图象经过点(﹣1,10)、(2,3)、(5,10),则这个抛物线的对称轴是( )
A.x=6
B.x=2
C.x=4
D.x=8
8、下列成语描述的事件为随机事件的是( )
A.守株待兔
B.缘木求鱼
C.水中捞月
D.水涨船高
9、某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则为( )
A.5
B.10
C.19
D.81
10、如图,在中,
,
,分别以
、
为圆心,大于
的长为半径画弧,两弧相交于点
、
.作直线
,交
于点
;同理作直线
交
于点
,若
,则
的长为( )
A.
B.
C.
D.
11、如图,矩形ABCD的两条对角线相交于点O,CD=4.以点A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为 _____.
12、如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,AA′═50cm,这个三角尺的周长与它在墙上形成影子的周长比是_____.
13、在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA=_____________
14、若二次根式有意义,则
的取值范围为 。
15、已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是____.
16、据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨.将300000用科学记数法表示应为 .
17、如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C,若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为-8、2
(1) 求二次函数的解析式
(2) 直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点
① 求点P的运动路程
② 如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由
(3) 在(2)的条件下,连结EF,求△PEF周长的最小值
18、已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.
(1)直线AB是⊙O的切线吗?请说明理由;
(2)若⊙O的直径为8cm,AB=10cm,求OA的长.(结果保留根号)
19、如图,在中,
,
,
.动点P从点A出发,以每秒7个单位长度的速度沿折线
向终点B运动,当点P不与
顶点重合时,作
,交边
于点Q,以
、
为边作
.设点P的运动时间为t秒.
(1)求的长
(2)当点P在边上时,求点Q到边
的距离(用含t的代数式表示)
(3)当的某条对角线与
的直角边垂直时,求
的面积
(4)以点P为直角顶点作等腰直角三角形,使点E与点C在
同侧,设
的中点为F,
的对称中心为点O,连结
.当
时,直接写出t的值
20、成都市空气质量整治领导小组近期提出“保护好环境,拒绝冒黑烟”.某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买型和
型两种环保节能的公交车10辆.若购买
型公交车1辆,
型公交车2辆,共需400万元;若购买
型公交车2辆,
型公交车1辆,共需350万元.
(1)求购买型和
型公交车每辆各需多少万元?
(2)预计在该线路上型和
型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买
型和
型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少费用是多少?
21、某中学为了解九年级学生对三大球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:
(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;
(2)若该中学九年级共有800名学生,请你估计该中学九年级学生中喜爱篮求运动的学生有多少名?
(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.
22、如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.
(1)求证:CF为⊙O的切线.
(2)若半径ON⊥AD于点M,CE=,求图中阴影部分的面积.
23、已知一组数据1,2,3,4,a,6的平均数为b,且a,b是方程x2-5x+6=0的两个根,求这组数的众数,平均数,方差.
24、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点D从点A出发,沿线段AC以每秒1个单位的速度向终点C运动,动点E同时从点B出发,以每秒2个单位的速度沿射线BC方向运动,当点D停止时,点E也随之停止,连结DE,当C. D. E三点不在同一直线上时,以ED、EC我邻边作▱ECFD,设点D运动的时间为t(秒).
(1)用含t的代数式表示CE的长度。
(2)当F点落在△ABC的内部时,求t的取值范围。
(3)设▱ECFD的面积为S(平方单位),求S与t之间的函数关系式。
(4)当点F到Rt△ABC的一条直角边的距离是到另一条直角边距离的2倍时,直接写出▱ECFD的面积.
邮箱: 联系方式: