1、已知y=-x(x+3-a)+1是关于x的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是( )
A. a=9 B. a=5 C. a≤9 D. a≤5
2、如图,在中,
,
,分别以点
,
为圆心,以大于
的长为半径画弧,两弧相交于点
和点
,作直线
,交
于点
,连接
,则
的周长为( )
A.4
B.5
C.6
D.8
3、对于这类特殊的三次方程可以这样来解.先将方程的左边分解因式:
,这样原方程就可变为
,即有
或
,因此,方程
和
的所有解就是原方程的解.据此,显然
有一个解为
,设它的另两个解为
,
,则式子
的值( )
A.
B.1
C.
D.7
4、已知二次函数,当
和
时对应的函数值相等,则下列说法中不正确的是( )
A.抛物线的开口向上
B.抛物线与y轴有交点
C.当时,抛物线
与x轴有交点
D.若是抛物线
上两点,则
5、如图,A、C是函数y=的图象上的任意两点,过A作x轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( )
A.S1>S2 B.S1<S2 C.S1=S2 D.S1和S2的大小关系不能确定
6、如图,在平面直角坐标系xOy中,直线y=﹣x+4与坐标轴交于A,B两点,OC⊥AB于点C,P是线段OC上的一个动点,连接AP,将线段AP绕点A逆时针旋转45°,得到线段AP',连接CP',则线段CP'的最小值为( )
A.
B.1
C.
D.
7、某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度(℃)随时间
(小时)变化的函数图象,其中BC段是双曲线
的一部分,则当
=16时,大棚内的温度约为
A.18℃ B.15.5℃ C.13.5℃ D.12℃
8、下列图形中,是中心对称图形但不是轴对称图形的是( )
A.
B.
C.
D.
9、下列运算中,正确的是( ).
A.
B.
C.
D.
10、下列各式计算正确的是( )
A. B.
C.
D.
11、埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的.1埃等于一亿分之一厘米,请用科学记数法表示1埃等于___________厘米.
12、如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动.若以A、M、N为顶点的三角形与△ACD相似,则运动的时间t为________秒.
13、根据如图所示的程序计算函数的值,若输入
的值是8,则输出
的值是
;若输入
的值是
,则输出
的值是___________.
14、若某个圆锥底面半径为3,侧面展开图的面积为,则这个圆锥的高为_______.
15、已知关于的二次函数
的图象开口向下,
与
的部分对应值如下表所示:
下列判断,①;②
;③方程
有两个不相等的实数根;
④若,则
,正确的是________________(填写正确答案的序号) .
16、在平面直角坐标系xOy中,若点B与点关于点O中心对称,则点B的坐标为______.
17、如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M,GF交CD延长线于点N.
(1)证明:点A、D、F在同一条直线上;
(2)随着点E的移动,线段DH是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连结EF、MN,当MN∥EF时,求AE的长.
18、为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,进市场调查,甲种花卉的种植费用y(元)与种植面积xm2之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.
(1)请直接写出当0≤x≤300和x>300时,y与x的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,如果甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
(3)在(2)的条件下,若种植总费用不小于123000元,求出甲种花卉种植面积的范围是多少?
19、如图,在正方形ABCD中,AE,DF相交于点O且AF=BE.
(1)求证:△ABE≌△DAF;
(2)求证:AE⊥DF.
20、四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:
方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.
方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.
请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.
21、如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.
(1)求证:△BDE∽△CAD;
(2)求证:△ADE∽△ABD.
22、等腰△ABD中,AD=BD,将△ABD绕腰BD的中点顺时针旋转180°,得到△CDB,CE平分∠BCD交BD于点E,在BC的延长线上取点F,使CF=DE,连接EF交CD于点G.
(1)如图1,∠A=60°,AB=4,求CF的长;
(2)如图2,求证:DE=2CG.
23、在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图①,当∠ABC=45°时,求证:AD=DE;并说明理由;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)
24、已知,求代数式
的值.
邮箱: 联系方式: