1、如图,点P在反比例函数y= (x>0)的图象上,横坐标为3,过点P分别向x轴,y轴作垂线,垂足分别为M,N,则长方形OMPN的面积为( )
A. 1 B. 2 C. 3 D. 4
2、若是正整数,最小的正整数n是( )
A.2 B.3 C.4 D.5
3、已知一组数据的方差是,则这组数据的标准差是( )
A. B.
C.
D.
4、下列图形是中心对称图形的是( )
A.
B.
C.
D.
5、如图,点D、E分别是的边
、
的中点,点F在
的延长线上,且
.若
,
,则
的长为( )
A.4.5
B.3.5
C.3
D.4
6、某品牌手机专卖店,今年1月份销售品牌手机共200部,第一季度的总销量为728部,设每月销售的平均增长率为x,则可列方程( )
A.
B.
C.
D.
7、下列各式中,与是同类二次根式的是( )
A.
B.
C.
D.
8、下列多项式中,不是完全平方式的是
A. B.
C.
D.
9、不等式的解集在数轴上表示正确的是( )
A.
B.
C.
D.
10、已知反比例函数y=的图像上有两点A(a-3,2b)、B(a,b-2),且a<0,则b的取值范围是(▲)
A.b<2 B.b<0 C.-2<b <0 D.b<-2
11、=________.
12、小刚在一次考试中,语文、数学、英语三门学科的平均成绩为90分,他记得语文成绩为88分,英语成绩为91分,则他的数学成绩是________.
13、如图,DE∥BC,,则
=_______.
14、如图,矩形ABCD中,BE平分∠ABC,EC平分∠BED,若AB=1,则ED的长度为_____.
15、2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,167,167,169,168,则她们身高的中位数是_____cm.
16、计算:(﹣2)2019•(
+2)2020=______.
17、从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为,则这个平行四边形的各内角的度数为_________.
18、作出函数y=﹣x+3的图象,并利用图象回答问题:
(1)当y<0时,x的取值范围为_____;
(2)当﹣2<x<2时,y的取值范围为_____;
(3)图象与直线y=x﹣1的交点坐标为______;这两条直线与y轴围成的三角形面积为______.
19、方程的根是_______________.
20、在某次七年级期末测试中,甲乙两个班的数学平均成绩都是89分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是_____班.
21、若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.
①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;
(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.
22、如图,直线图像与y轴、x轴分别交于A、B两点
(1)求点A、B坐标和∠BAO度数
(2)点C、D分别是线段OA、AB上一动点(不与端点重合),且CD=DA,设线段OC的长度为x ,,请求出y关于x的函数关系式以及定义域
(3)点C、D分别是射线OA、射线BA上一动点,且CD=DA,当ΔODB为等腰三角形时,求C的坐标(第(3)小题直接写出分类情况和答案,不用过程)
23、分解因式:
(1)-3ma3+6ma2-12ma;
(2)(a2+1)2-4a2.
24、已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?
25、某文具店计划购进两种计算器若购进A计算器10个,B计算器5个,需要1000元:若购进A计算器5个,B计算器3个,需要550元.
(1)购进A、B两种计算器每个各需多少元?
(2)该商店决定购进这两种计算器180个,若购进A种计算器的数量不少于B种计算器数量的6倍,且不超过B种计算器数量的8倍,则该商店共有几种进货方案?
(3)若销售每个A计算器可获利润20元,每个B计算器可获利润30元,在(2)的各种进货方案中,哪一种方案获利润较大?最大利润是多少?
邮箱: 联系方式: