1、已知△ABC是斜边长为1cm的等腰直角三角形, 以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE, …, 依此类推,第n个等腰直角三角形的斜边长是( )
A. cm B.(
)n-1 C.2ncm D.
cm
2、分式方程的解是( ),
A. B.
C.
D.
或
3、下列各组数作为三角形的三边,能组成直角三角形的一组数是( )
A.2、3、4
B.3、4、5
C.1、、
D.、
、
4、实数a,b在数轴上的位置如图所示,则化简代数式|a+b|−a的结果是( )
A.2a+b B.2a C.a D.b
5、如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是( )
A.∠ABD=∠BDC,OA=OC
B.∠ABC=∠ADC,AB=CD
C.∠ABC=∠ADC,AD∥BC
D.∠ABD=∠BDC,∠BAD=∠DCB
6、下列图形中,既是轴对称图形又是中心对称图形的是( ).
A. B.
C.
D.
7、函数的自变量x的取值范围是( )
A. B.
C.
D.
8、下列式子中,是最简二次根式的是( )
A. B.
C.
D.
9、将三角尺绕点
按逆时针方向旋转32°到
的位置,斜边
和
相交于点
,则
的度数等于( )
A.28° B.30° C.32° D.35°
10、如图,D、E分别是△ABC的边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=12,则S1﹣S2=( )
A.1.5
B.2
C.3
D.0.5
11、如图,在菱形中,对角线
、
相交于点
,点
为边
的中点,连接
,已知
,则菱形
的周长为________ (用含
的式子表示).
12、已知点和点
在直线
上,则
______
(填“>”,“<”或“=”).
13、分解因式:x2﹣(x﹣3)2=_____.
14、因式分解:=__.
15、不等式组的解集是____.
16、最简根式和
是同类二次根式,则
=_________.
17、在平面直角坐标系xOy中,一次函数和
的图象如图所示,则二元一次方程组
的解为______.
18、直线与双曲线
的图象交于A、B两点,设A点的坐标为
,则边长分别为m、n的矩形的面积为_________,周长为_________.
19、菱形的周长是52,一对角线的长是10,这菱形的面积是_________
20、在一个不透明的袋子中有1个红球,2个白球和若干个黑球.小明将袋子中的球摇匀后,从中任意摸出一个球,记下颜色后放回袋中并摇匀.在多次重复以上操作后,小明统计了摸到红球的频率,并绘制了如图所示的折线统计图,则袋子中一共有球____________个.
21、平面直角坐标系xoy中,点P的坐标为(m+1,m-1).
(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;
(2)如图,一次函数y= -x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.
(3)若点P在直线AB上,已知点R(,
),S(
,
)在直线y=kx+b上,b>2,
+
=mb,
+
=kb+4若
>
,判断
与
的大小关系
22、如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.
(1)求证:四边形AFHD为平行四边形;
(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.
23、在平行四边形ABCD中,用尺规作图的角平分线(不用写过程,留下作图痕迹),交DC边于点H,若
,
,求平行四边形ABCD的周长.
24、(2016山东省菏泽市)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=CM+
BN.
25、先化简,再求值,其中
.
邮箱: 联系方式: