1、已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系( )
A.y1<y3<y2
B.y2<y1<y3
C.y3<y1<y2
D.y3<y2<y1
2、下列三角形,①有两个角等于;②有一个角等于
的等腰三角形;③一腰上的中线也是这条腰上的高的等腰三角形,其中能判定是等边三角形的个数是( )
A.3个 B.2个 C.1个 D.0个
3、下列各组数,不能作为直角三角形的三边长的是( )
A. 3,4,5 B. 1,1, C. 2,3,4 D. 6,8,10
4、如图,△ABC经过平移后得到△DEF,则下列说法中正确的有( )
①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC∥EF,BC=EF.
A. 1 个 B. 2个 C. 3个 D. 4个
5、如图是用直尺和圆规作一个角等于已知角,那么能得出的依据是运用全等三角形判定( )
A.边边边
B.边角边
C.角边角
D.角角边
6、不等式5+2x <1的解集在数轴上表示正确的是( ).
A. B.
C.
D.
7、平面直角坐标系中,点、
、
,当
时,
的取值范围为( )
A. B.
C.
D.
或
8、已知抛物线,若点
与点Q关于该抛物线的对称轴对称,则点Q的坐标是( ).
A.
B.
C.
D.
9、已知点,在平面直角坐标系中
以点
为对称中心与
成中心对称,则点A的坐标为( )
A.
B.
C.
D.
10、若关于x的分式方程无解,则a的值为( )
A. B.2 C.
或2 D.
或﹣2
11、已知直角三角形的两边长分别为12cm和5cm,,则第三边长为___________________.
12、已知x=m和x= m+6时,多项式x2+bx+c的值都等于0,则当x=m+3时,多项式x2+bx+c的值等于__________.
13、方程x2=0的解是_______.
14、某班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表所示
则该班捐款的平均数为________元.
15、已知一个四边形的边长分别是a、b、c、d,其中a、c为对边,且a2+b2+c2+d2=2ac+2bd,则此四边形的形状为_____________.
16、 已知x=2-,则代数式x2-2x-1的值为______.
17、若,则
______.
18、如图,在平行四边形ABCD中,CE平分∠BCD与AB交于点E,BF平分∠ABC与AD交于点F,若,EF=4,则CD长为________.
19、方程的根是________________.
20、如图,在△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC边上时,∠CAE的度数为___________.
21、如图,在□ABCD中,BC=2AB,M是AD的中点,CE⊥AB,垂足为E,求证:∠DME=3∠AEM.
22、化简:﹣
+3
23、[问题情境]
已知矩形的面积为一定值1,当该矩形的一组邻边分别为多少时,它的周长最小?最小值是多少?
[数学模型]
设该矩形的一边长为x,周长为L,则L与x的函数表达式为 .
[探索研究]
小彬借鉴以前研究函数的经验,先探索函数的图象性质.
(1)结合问题情境,函数的自变量x的取值范围是 ,
如表是y与x的几组对应值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①直接写出m的值;
②画出该函数图象,结合图象,得出当x= 时,y有最小值,y的最小值为 .
[解决问题]
(2)直接写出“问题情境”中问题的结论.
24、如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时30海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行1.5小时到达小岛C的正南方D点.求船从A到D一共走了多少海里?
25、分解因式:
邮箱: 联系方式: