1、某区学生在“垃圾分类知识”线上答题活动中,甲、乙、丙、丁四所学校参加线上答题的人数相同,四所学校答题所得分数的平均数和方差的数值如表:
选手 | 甲 | 乙 | 丙 | 丁 |
平均数 | 87 | 87 | 87 | 87 |
方差 | 0.027 | 0.043 | 0.036 | 0.029 |
则这四所学校成绩发挥最稳定的是( )
A.甲
B.乙
C.丙
D.丁
2、在中,已知∠A = 60° ,则∠D 的度数是( )
A.60°
B.90°
C.120°
D.30°
3、如图,在已知的△ABC中,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径作弧,两弧相交于两点EF;②作直线EF交BC于点D连接AD.若AD=AC,∠C=40°,则∠BAC的度数是( )
A.105° B.110° C.I15° D.120°
4、下列说法正确的是( )
A. 全等的两个图形成中心对称
B. 成中心对称的两个图形必须能完全重合
C. 旋转后能重合的两个图形成中心对称
D. 成中心对称的两个图形不一定全等
5、已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为( )
A. 2cm B. 3cm C. 4cm D. 6cm
6、若代数式有意义,则实数 x 的取值范围是( )
A.x 5
B.x 2
C.x 5
D.x 2
7、如图,一次函数y=mx+n的图象分别与x轴,y轴交于点A(﹣4,0),B(0,3),则关于x的不等式mx+n≥0的解集为( )
A.x≥﹣4 B.x≥0 C.x≥3 D.x≤﹣4
8、如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是( )
A. ∠ABC=90° B. AC=BD C. OA=OB D. OA=AB
9、下列图形既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
10、在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是( )
A. 方差 B. 平均数 C. 众数 D. 中位数
11、在Rt△ABC中,∠C=90°,AC=12,BC=16,则连接两条直角边中点的线段长为__.
12、如图,△ABC是等腰直角三角形,AB=AC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为__.
13、一个不透明的布袋里有30个球,每次摸一个,摸一次就一定摸到红球,则红球有_______个.
14、计算:(﹣4ab2)2÷(2a2b)0=_____.
15、如图,在等边三角形ABC中,AD是BC边上的高,且AD=4,E是AB边的中点,点P在AD上运动,则PB+PE的最小值是________.
16、当m=_________时,分式的值为0.
17、化简:__________.
18、若是一个完全平方式,则
的值是_______.
19、已知两条线段的长为和
,当第三条线段的长为_________
时,这三条线段能组成一个直角三角形.
20、已知a+a-1=3,则________
21、如图①,四边形是正方形,点
是边
的中点,
,且
交正方形的外角平分线
于点
请你认真阅读下面关于这个图形的探究片段,完成所提出的问题.
(1)探究1:小强看到图①后,很快发现这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(个直角三角形,一个钝角三角形)考虑到点E是边BC的中点,因此可以选取AB的中点M(如图②),连接EM后尝试着去证明
就行了.随即小强写出了如下的证明过程:
证明:如图②,取AB的中点M,连接EM.
∵
∴
又∵
∴
∵点E、M分别为正方形的边BC和AB的中点,
∴
∴是等腰直角三角形,
∴
又∵是正方形外角的平分线,
∴,∴
∴
∴,
∴
(2)探究2:小强继续探索,如图③,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立小强进一步还想试试,如图④,若把条件“点E是边BC的中点”为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF仍然成立请你选择图③或图④中的一种情况写出证明过程给小强看.
22、下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.
作法:如图
①以点B为圆心,AC长为半径作弧;
②以点C为圆心,AB长为半径作弧;
③两弧交于点D,A,D在BC同侧;
④连接AD,CD.
所以四边形ABCD是矩形,
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:链接BD.
∵AB=________,AC=__________,BC=BC
∴ΔABC≌ΔDCB
∴∠ABC=∠DCB=90°
∴AB∥CD.
∴四边形ABCD是平行四边形
∵∠ABC=90°
∴四边形ABCD是矩形.(_______________)(填推理的依据)
23、小明和小兵两人参加体育项目训练,近期的5次测试成绩如下表所示:
| 1次 | 2次 | 3次 | 4次 | 5次 |
小明 | 10 | 14 | 13 | 12 | 13 |
小兵 | 11 | 11 | 15 | 14 | 11 |
根据以上信息,解决以下问题:
(1)小明成绩的中位数是__________.
(2)小兵成绩的平均数是__________.
(3)为了比较他俩谁的成绩更稳定,老师利用方差公式计算出小明的方差如下(其中表示小明的平均成绩);
请你帮老师求出小兵的方差,并比较谁的成绩更稳定。
24、解方程:
(1)x2—4x+3=0; (2).
25、求不等式组的解集
邮箱: 联系方式: