1、下列说法中错误的是( )
A.有两个角及它们的夹边对应相等的两个三角形全等
B.有两个角及其中一个角的对边对应相等的两个三角形全等
C.有两条边及它们的夹角对应相等的两个三角形全等
D.有两条边及其中一条边的对角对应相等的两个三角形全等
2、2018年4月18日,被誉为“中国天眼”的望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一,将0.00519用科学记数法表示应为( )
A. B.
C.
D.
3、若,则下列不等式中一定成立的有( )
A. B.
C. D.
4、如图,在中,对角线
与
相交于点
,点
分别是
的中点,连接
.若
,则
的长为( )
A.8
B.6
C.4
D.2
5、甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是( )
A.甲
B.乙
C.丙
D.丁
6、《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.”小聪按此方法解关于x的方程x2+10x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( )
A.6 B. C.
D.
7、解分式方程时,去分母后所得的方程正确的是( )
A. B.
C. D.
8、如图,在菱形ABCD中,对角线AC,BD交于点O,DE⊥AB于点E,连接OE,若DE=,BE=1,则∠AOE的度数是( )
A.30° B.45° C.60° D.75°
9、能说明命题“若一次函数经过第一、二象限,则k+b>0”是假命题的反例是( )
A.
B.
C.
D.
10、已知点,
,
都在直线
上,则
,
,
的大小关系是( )
A.
B.
C.
D.
11、已知用“<”将
连接________.
12、如图,网格中每个小正方形的边长均为1,点,
,
都在格点上(格点为小正方形的顶点),以
为圆心,
为半径画弧,交最上方的网格线于点
,则
的长为______.
13、我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.
14、若分式方程式无解,则m的值为___.
15、如图,在中,
,点E,F在
上,且
,则
的面积为___________.
16、分式方程的根为___________.
17、分解因式:=_______.
18、若关于的一元二次方程
有一个实数根为
,则另一个实数根为__________.
19、若函数是关于x的一次函数,则m______.
20、在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10cm,6cm,一条对角线的长为8cm;则原三角形纸片的周长是_______.
21、图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形分别满足以下要求:
(1)在图1中画一个△ABC,使△ABC为面积为5的直角三角形;
(2)在图2中画一个△ABC,使△ABC为钝角等腰三角形.
22、在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).那么初三(1)班至少有多少名同学?最多有多少名同学?
23、某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用12天;
(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
24、解不等式组,把其解集在数轴上表示出来,并写出它的整数解.
25、如图,某旅游景点的划船处在离水面高度为3m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为6m,此人以0.1m/s的速度收绳10s后船头移动到点D的位置.(假设绳子是直的,结果保留根号)
(1)此时绳子CD长是多少m;
(2)船向岸边移动的长度BD是多少m.
邮箱: 联系方式: