1、为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是( )
A. 方程思想 B. 从特殊到一般 C. 数形结合思想 D. 分类思想
2、在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球( )
A.24个
B.10个
C.9个
D.4个
3、菱形的两条对角线分别是12和16,则该菱形的边长是( )
A.10
B.8
C.6
D.5
4、世界上最小的开花结果植物质量克,将数
用科学记数法表示( )
A. B.
C.
D.
5、在凸十边形的所有内角中,锐角的个数最多是( )个.
A.0
B.1
C.3
D.5
6、如图,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A.
B.
C.
D.
7、若,则
的值是( )
A.1 B.0或1 C.1或 D.0或1或
8、随着市场对新冠疫苗需求越来越大,为满足市场需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产10万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产400万份疫苗所需时间相同,设更新技术前每天生产x万份,依据题意得( )
A.
B.
C.
D.
9、已知⊙P的半径为5,圆心P的坐标为(1,2),点Q的坐标为(0,5),则点Q( )
A. 在⊙P外 B. 在⊙P上 C. 在⊙P内 D. 不能确定
10、将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(-2,0),∠ =30°.则Δ
旋转过程中所扫过的图形的面积为( )
A. B.
C.
D.
11、某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止,特快巴士到达乙地停留45分钟后,按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示.求普通巴士到达乙地时,特快巴士与甲地之间的距离为_____千米.
12、如图,6个形状、大小完全相同的菱形组成网格,已知菱形的一个角∠O为60°,A,B,C都在格点上,则tan∠ABC的值为_____.
13、要使分式有意义,则x应满足的条件是_________________.
14、若,则代数式
的值为________.
15、二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大.⑤(m为任意实数)其中正确的结论有_____.(填序号)
16、某几何体的三视图如图所示, 则其表面积为________.
17、点E是矩形ABCD边AB延长线上的一动点,在矩形ABCD外作Rt△ECF,其中∠ECF=90°,过点F作FG⊥BC,交BC的延长线于点G,连接DF,交CG于点H.
(1)发现:如图1,若AB=AD,CE=CF,猜想线段DH与HF的数量关系是 ;
(2)探究:如图2,若AB=nAD,CF=nCE,则(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)拓展:在(2)的基础上,若射线FC过AD的三等分点,AD=3,AB=4,则直接写出线段EF的长.
18、如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.的顶点在格点上,仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:
(1)将边绕点
顺时针旋转90°得到线段
;
(2)画边的中点
;
(3)连接并延长交
于点
,直接写出
的值;
(4)在上画点
,连接
,使
.
19、定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.
(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;
(2)在(1)的条件下,⊙O半径为5.
①若AD为直径,且sinA=,求BC的长;
②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是 ;
(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.
20、如图,抛物线与x轴交于A、B两点,与y轴交于点C,已知A(–1,0),且直线BC的解析式为y=
x-2,作垂直于x轴的直线
,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).
(1)求抛物线的解析式;
(2)若△CEF是以CE为腰的等腰三角形,求m的值;
(3)点P为y轴左侧抛物线上的一点,过点P作交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.
21、一个不透明的口袋里装有分别标有汉字“美”、“丽”、“泰”、“兴”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“泰兴”的概率.
22、如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.
(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.
(2)把图1中的△ACE绕着A点顺时针旋转60°到△ABF的位置(如图2),分别连结DF、EF.
①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;
②试判断四边形CDFE的形状,并说明理由.
23、(1)化简求值:,其中x是一元二次方程x(x﹣1)=2x﹣2的解.
(2)解不等式组:,并求其整数解的和.
24、计算:(1)(a-b)2-a(a+2b);(2)
邮箱: 联系方式: