1、如图,在菱形ABCD中, 边AB的垂直平分线交对角线AC于点F,垂足为点E,连结DF,若∠BAD=80°,则∠CDF的度数为( )
A.80° B.70° C.65° D.60°
2、下列函数中:①;②
;③
;④
,其中一次函数的个数是( )
A.1
B.2
C.3
D.4
3、下列式子中:①,②
,③
,④
,最简分式有( )
A.1个 B.2个 C.3个 D.4个
4、数的算术平方根是( )
A.
B.±5
C.
D.5
5、下面给出四边形ABCD中的∠A、∠B、∠C、∠D的度数之比,能判定四边形ABCD是平行四边形的是( ).
A. 3:4:4:3 B. 4:3:4:3 C. 4:3:2:1 D. 2:2:3:3
6、式子①,②
,③
,④
中,是分式的有 ( )
A.①②
B.③④
C.①③
D.①②③④
7、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有一棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB的长为( )
A.12
B.16或12
C.16
D.8或12
8、制鞋厂准备生产一批男皮鞋,经抽样120名中年男子,得知所需鞋号和人数如下:
鞋号/cm | 20 | 22 | 23 | 24 | 25 | 26 | 27 |
人数 | 8 | 15 | 20 | 25 | 30 | 20 | 2 |
并求出鞋号的中位数是24,众数是25,平均数是24,下列说法正确的是( )
A. 所需27cm鞋的人数太少,27cm鞋可以不生产
B. 因为平均数24,所以这批男鞋可以一律按24cm的鞋生产
C. 因为中位数是24,故24cm的鞋的生产量应占首位
D. 因为众数是25,故25cm的鞋的生产量要占首位
9、若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A. k<5 B. k≤5,且k≠1 C. k<5,且k≠1 D. k>5
10、已知函数,若函数图像不经过第三象限,则
的值不可能是( )
A.0 B.1 C.2 D.5
11、如图,在平面直角坐标系中,菱形的边
在
轴上,
与
交于点
(4,2),反比例函数
的图象经过点
.若将菱形
向左平移
个单位,使点
落在该反比例函数图象上,则
的值为_____________.
12、如图,如果要使 ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.
13、将一副三角板,按如图方式叠放,那么的度数是______.
14、已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为_____.
15、如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ=AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP= ________ 时,△ABC和△QPA全等.
16、任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为_____.
17、若关于x的分式方程=1的解是非负数,则m的取值范围是_____.
18、由方程组(其中x、y、z均不为
)可得
等于_______.
19、如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
20、已知,则
的值为_________.
21、在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= ∠CED=α.
(1)如图1,将AD、EB延长,延长线相交于点0.
①求证:BE= AD;
②用含α的式子表示∠AOB的度数(直接写出结果);
(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点.
注:第(2)问的解答过程无需注明理由.
22、如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,
求证:∠EBC=∠A.
23、已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.
(1)求证:CD=BD;
(2)写出线段AB,PF和PE之间数量关系,并证明你的结论.
24、如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.
25、如图,在平面直角坐标系中,一次函数的图象与反比例函数
的图象相交于第一、三象限内的
两点,与
轴交于点
.
⑴求该反比例函数和一次函数的解析式;
⑵在轴上找一点
使
最大,求
的最大值及点
的坐标;
⑶直接写出当时,
的取值范围.
邮箱: 联系方式: