1、下列二次根式是最简二次根式的是( )
A.
B.
C.
D.
2、如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,∠ABC=120°,则菱形ABCD的面积为( )
A.12 B. C.
D.16
3、下列计算错误的是( )
A. B.
C. D.
4、如图,正方形 ABEF 的面积为 4,△BCE 是等边三角形,点 C 在正方形ABEF 外,在对角线 BF 上有一点 P,使 PC+PE 最小,则这个最小值的平方为( )
A. B.
C.12 D.
5、如图,一根木棍(AB),斜靠在与地面(OM)垂直的墙(OM)上,当木棍A端沿墙下滑,且B端沿地面向右滑行时,AB的中点P到点O的距离( )
A.变大
B.变小
C.先变小后变大
D.不变
6、如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为( )
A. B.-
C.
-2 D.2-
7、如图,大正方形的边长为,小正方形的边长为
,
,
表示四个相同长方形的两边长(
).则①
;②
;③
;④
,中正确的是( )
A.①②③
B.①②④
C.①③④
D.①②③④
8、如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )
A.AB=DC,AD=BC B.AB∥DC,AD∥BC
C.AB∥DC,AD=BC D.OA=OC,OB=OD
9、如下图,直角坐标平面内,动点
按图中箭头所示方向依次运动,第1次从点
运动到点
,第2次运动到点
,第3次运动到点
,…按这样的运动规律,动点
第2020次运动到点( )
A.
B.
C.
D.
10、①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是( )
A. ①② B. ③④ C. ②③ D. ②④
11、如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则长方形纸条的宽度是__cm.
12、计算: =___________;
13、在RtABC中,有两条边的长是3和4,则第三边的长是____________.
14、如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k=______.
15、边长为6cm的等边三角形中,其一边上高的长度为__________________
16、如图所示的美丽图案,绕着它的旋转中心至少旋转_________度,能够与原来的图象重合.
17、如图,在平面直角坐标系中,正方形与反比例函数
(
,
)交于点
,点
坐标为(5,-1),则
的值为_____.
18、已知关于x的一元二次方程的常数项为零,则k的值为_____.
19、如图,点、
分别是平行四边形
的两边
、
的中点.若
的周长是30,则
的周长是_________.
20、用换元法解方程,若设
,那么所得到的关于
的整式方程为________.
21、已知在中,
,求作:矩形ABCD(用尺规作图法,保留作图痕迹,不要求写作法)
22、因式分解:(1).
(2).
(3).
(4).
23、综合与实践动手操作:用矩形下的折叠会出现等腰三角形,快速求BF的长.
(1)如图,在矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点D与点B重合,折痕为EF,则等腰三角形是 ;
(2)利用勾股定理建立方程,求出BF的长是多少?
(3)拓展:将此矩形折叠,使点B与DC的中点E重合,请你利用添加辅助线的方法,求AM的长;
24、解方程:
(1)x2-5x+2=0; (2)x2-6x=1;
(3))x2-4x+3=0; (4)7x(x-3)=x-3.
25、分解因式
(1)
(2)
邮箱: 联系方式: