1、平面直角坐标系中,二次函数的图象如图所示,现给出下列结论:①
;②
;③
;④
(m为实数);⑤
.其中正确结论的个数是( )
A.1
B.2
C.3
D.4
2、已知,
,判断下列关于ab的值正确的是( )
A.比大 B.介于
,
之间 C.介于
,
之间 D.比
小
3、在Rt△ABC中,∠C=90°,若∠B=2∠A,则tanA的值为( )
A. B.
C.
D.
4、如图是一个小正方体的表面展开图,则该正方体有“迎”字一面的相对面上的字是( )
A.建
B.党
C.百
D.年
5、已知+|x-3y-5|=0,则yx的值为( )
A. 1 B. -1 C. 2 D. -2
6、将二次函数y=(x﹣1)2+2的图象向下平移3个单位,得到的图象对应的表达式是( )
A.y=(x+2)2+2 B.y=(x﹣4)2+2
C.y=(x﹣1)2﹣1 D.y=(x﹣1)2+5
7、某超市6月份连续5天的利润是(单位:万元), 0.2、0.17、0.23、0.2、0.2,估计该市6月份的总利润是( )
A. 6万元 B. 6.2万元 C. 2万元 D. 1万元
8、下列语句:①延长线段AB到C,使BC=AC,②反向延长线段AB,得到射线BA,③画直线,④两点之间线段最短,⑤一个
的角,在放大镜下看,它的度数会变大了.其中正确的个数是( )
A.4个 B.3个 C.2个 D.1个
9、如图,在四边形中,
,以
为圆心,
为半径的弧恰好与
相切,切点为
.若
,则
的值是( )
A.
B.
C.
D.
10、下列运算中,正确的是( )
A.
B.
C.
D.
11、若m2+mn=−5,n2−3mn=10,则m2+4mn−n2的值为_____.
12、如果关于的一元二次方程
有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,若
是倍根方程,则
的值是______.
13、青藏铁路是当今世界上海拔最高、线路最长的高原铁路,因路况、季节、天气等原因行车的平均速度在(千米/小时)之间变化,铁路运行全程所需要的时间(小时)与运行的平均速度(千米/小时)满足如图所示的函数关系,列车运行的平均速度最大和列车运行的平均速度最小时全程所用时间相差___小时.
14、投掷一枚均匀的立方体骰子(六个面上分别标有1点,2点,……,6点),标有6点的面朝上的概率是________.
15、若的两边与
的两边分别平行,且
,那么
的度数为___.
16、若,
,则代数式
的值为 ______.
17、如图,在中,
,
,
,
为
的中点,动点
从点A出发,沿
以每秒4个单位长度的速度向终点
匀速运动(点
不与A、
、
重合),过点
作
的垂线交折线
于点
.以
、
为邻边构造矩形
.设矩形
与
重叠部分图形的面积为S,点
的运动时间为
秒.
(1)直接写出的长(用含
的代数式表示);
(2)当点落在
的边上时,求
的值;
(3)当矩形与
重叠部分图形为矩形时,求S与
的函数关系式,并写出
的取值范围;
(4)沿直线将矩形
剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,请直接写出所有符合条件的
的值.
18、如图,是二次函数y=ax2+bx+c的部分图象.
(1)结合图象信息,求此二次函数的表达式;
(2)当y>0时,直接写出x的取值范围: 。
19、一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点位于
的中央且距地面6m,建立如图所示的坐标系.
(1)求抛物线的表达式;
(2)该隧道内设双行道,中间隔离带1m,一辆货车高4m,宽m,能否安全通过,为什么?
20、观察下列等式:
第1个等式:;
第2个等式: ;
第3个等式:;
第4个等式:;
…
根据你观察到的规律,解决下列问题:
(1)请写出第5个等式:_____________________;
(2)请写出第个等式:___________________________(用含
的等式表示),并证明.
21、分解因式:
(1)5a2+10ab;(2)ax2﹣4axy+4ay2.
22、计算
(1)计算:
(2)分解因式
23、如图,将边长为的正方形
折叠,使点
落在
边的中点
处,点
落在
处,折痕为
.
(1)求线段的长.
(2)求以线段为边长的正方形的面积.
(3)求线段的长度.
24、(1)先化简:,并从0,-1,2中选一个合适的数,作为a的值代入求值。
(2)先化简后求值:,其中a满足
。
邮箱: 联系方式: