1、某商场有四类食品,食品类别和种数见下表,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
类别 | 粮食类 | 植物油类 | 动物性食品类 | 果蔬类 |
种数 | 40 | 10 | 30 | 20 |
A.7
B.6
C.5
D.4
2、已知定义在复数集上的函数
满足
,则
( )
A. B.0 C.2 D.3
3、终边落在直线上的角
的集合为( )
A.
B.
C.
D.
4、若等差数列首项为2,公差为2,其前
项和记为
,则数列
前
项和为( )
A.
B.
C.
D.
5、复数的共轭复数为( )
A. B.
C.
D.
6、已知点和
,在
轴上求一点
,使得
最小,则点
的坐标为( )
A.
B.
C.
D.
7、设向量,
,若
∥
,则实数
的值为( )
A.2
B.3
C.-4
D.6
8、若≤
,则
为( )
A.
B.≥
C.≥
D.
9、已知,
,则
的值为( )
A.
B.
C.
D.
10、已知三条互不相同的直线和三个互不相同的平面
,现给出下列三个命题:
①若与
为异面直线,
,则
;
②若,
,则
;
③若,则
.
其中真命题的个数为( )
A.3
B.2
C.1
D.0
11、已知在中,点M在边BC上,且
,点E在边AC上,且
,则向量
( )
A.
B.
C.
D.
12、如图,分别为边长是4的正方形
的边
的中点,沿图中虚线折起,使
三点重合,则围成的几何体的体积是( )
A. B.4 C.8 D.
13、在中,角
所对的边分别为
,
的平分线交
于点D,且
,则
的最小值为________.
14、函数的最小值是___________.
15、在平面直角坐标系中,已知点,
,
,
是
轴上的两个动点,且
,则
的最小值为__________
16、数列的通项公式为
,则使
取最小值的
值为______.
17、函数,
的反函数为_______________.
18、半径为1的扇形面积也为1,则其圆心角的弧度数是________
19、已知关于的不等式
的解集为
,则
的值为__________.
20、在锐角△ABC中,BC=2,sinB+sinC=2sinA,则AB+AC=_____
21、在四面体中,E,F分别是
,
的中点.若
,
所成的角为60°,且
,则
的长为__________.
22、如图,三棱锥中,平面
平面
,
,若
,则该三棱锥的体积的最大值为____________.
23、如图,正三角形的边长为4,
分别在三边
上,且
为
的中点,
(1)若,求
的面积;
(2)求的面积
的最小值,及使得
取得最小值时
的值.
24、在棱长为的正方体
中,
是
的中点.
(1)求直线与
所成角的余弦值;
(2)求二面角的正弦值.
25、某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.
(1)求续驶里程在的车辆数;
(2)求续驶里程的平均数;
(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在
内的概率.
邮箱: 联系方式: